The metal-poor end of the lithium plateau

被引:0
|
作者
Sbordone, L. [1 ]
Bonifacio, P. [1 ]
Hernandez, J. I. Gonzalez [1 ]
Cayrel, R. [2 ]
Behara, N. [1 ]
Molaro, R. [3 ]
Plez, B. [4 ]
Francois, R. [5 ]
Christlieb, N. [6 ]
Ludwig, H. -G. [1 ]
Sivarani, T. [7 ]
Beers, T. C. [7 ]
Van't Veer, C.
机构
[1] Observ Paris, CIFIST & GEPI, 5 Pl Jules Janssen, F-92190 Meudon, France
[2] GEPI Observ Paris, Paris, France
[3] INAF Osservat Astron TRieste, Trieste, Italy
[4] Univ Montpellier 2, GRAAL, F-34095 Montpellier 5, France
[5] ESO, Chile, Germany
[6] Uppsala Univ, Dept Astron & Space Phys, S-75105 Uppsala, Sweden
[7] Michigan State Univ, CSCE, Dept Phys & Astron, E Lansing, MI 48824 USA
来源
FIRST STARS III | 2008年 / 990卷
关键词
stellar atmospheres; opacity and line formation; Galactic halo; origin; formation; and abundances of the elements; big bang nucleosynthesis;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present our current sample of Lithium abundances in 28 low metallicity dwarf and Turn Off (TO) stars ([Fe/H] between -2.5 and -3.5), based on high resolution, high signal to noise echelle spectra. Nine new stars have been added to the Bonifacio et al. [1] sample, and the full sample has been reanalyzed in order to take into account the effect of two different possible temperature scales. In fact, the Li abundance measurement based on the 670.8 nm line is highly sensitive to temperature, and T-eff scales are still poorly calibrated at low metallicities. First, the effective temperature has been derived from H alpha profile fitting, and second, directly from the star's infrared flux. The two methods offer similar precision but are affected by different uncertainties and systematics. The infrared flux method (IRFM) leads to a larger T-eff dispersion than the H alpha profile fitting, while also producing an offset of about 150 K towards hotter temperatures. This leads to a contraction of the metallicity scale of the sample, which encompasses [Fe/H]=-3.7 to -2.5 when using Ha calibrated temperatures, and [Fe/H]=-3.4 to -2.5 when using IRFM. The higher average IRFM temperature increases somewhat the mean Li abundance, changing from A(Li)(H alpha)=2.10 to A(Li)(IRFM)=2.18.
引用
收藏
页码:339 / +
页数:2
相关论文
共 50 条
  • [21] Lithium in very metal-poor thick disc stars
    Molaro, P
    Bonifacio, P
    Pasquini, L
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1997, 292 (01) : L1 - L4
  • [22] The lithium isotopic ratio in very metal-poor stars
    Lind, K.
    Melendez, J.
    Asplund, M.
    Collet, R.
    Magic, Z.
    ASTRONOMY & ASTROPHYSICS, 2013, 554
  • [23] Lithium isotopic abundances in metal-poor halo stars
    Asplund, Martin
    Lambert, David L.
    Nissen, Poul Erik
    Primas, Francesca
    Smith, Verne V.
    ASTROPHYSICAL JOURNAL, 2006, 644 (01): : 229 - 259
  • [24] LITHIUM ABUNDANCES IN CARBON-ENHANCED METAL-POOR STARS
    Masseron, Thomas
    Johnson, Jennifer A.
    Lucatello, Sara
    Karakas, Amanda
    Plez, Bertrand
    Beers, Timothy C.
    Christlieb, Norbert
    ASTROPHYSICAL JOURNAL, 2012, 751 (01):
  • [25] Lithium abundance in the metal-poor open cluster NGC 2243
    Francois, P.
    Pasquini, L.
    Biazzo, K.
    Bonifacio, P.
    Palsa, R.
    ASTRONOMY & ASTROPHYSICS, 2013, 552
  • [26] Precise Li abundances in metal-poor stars: depletion in the Spite plateau
    Melendez, J.
    Casagrande, L.
    Ramirez, I.
    Asplund, M.
    CHEMICAL ABUNDANCES IN THE UNIVERSE: CONNECTING FIRST STARS TO PLANETS, 2010, (265): : 71 - +
  • [27] 7Li in metal-poor stars:: The spread of the Li plateau
    Ryan, SG
    LIGHT ELEMENTS AND THEIR EVOLUTION, 2000, (198): : 249 - 258
  • [28] Lithium abundance in the metal-poor open cluster NGC 2243
    François, P. (patrick.francois@obspm.fr), 1600, EDP Sciences (552):
  • [29] Isotopic lithium abundances in five metal-poor disk stars
    Nissen, PE
    Lambert, DL
    Primas, F
    Smith, VV
    ASTRONOMY & ASTROPHYSICS, 1999, 348 (01) : 211 - 221
  • [30] Metal-poor stars
    Frebel, Anna
    NEW HORIZONS IN ASTRONOMY: FRANK N. BASH SYMPOSIUM 2007, 2008, 393 : 63 - 77