Finite volume method for solving a one-dimensional parabolic inverse problem

被引:14
|
作者
Wang, Bo [1 ,2 ]
Zou, Guang-an [2 ]
Zhao, Peng [2 ]
Wang, Qiang [3 ,4 ]
机构
[1] Henan Univ, Inst Appl Math, Kaifeng 475004, Peoples R China
[2] Henan Univ, Coll Math & Informat Sci, Kaifeng 475004, Peoples R China
[3] Tianjin Univ, Coll Mech Engn, Tianjin 300072, Peoples R China
[4] Tianjin Univ, Dept Math, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Parabolic partial differential equations; Inverse problem; Finite volume method; Difference schemes; HEAT-CONDUCTION PROBLEM; PARTIAL-DIFFERENTIAL-EQUATION; NUMERICAL-SOLUTION; CONTROL PARAMETER; SUBJECT;
D O I
10.1016/j.amc.2010.09.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, finite volume method is used to solve a one-dimensional parabolic inverse problem with source term and Neumann boundary conditions for the first time. Some advantages of this approach are developing difference schemes and maintaining certain properties of the physics of the problems, especially for the treatment of the source term and the unknown boundary conditions. Numerical results show that our method is more effective. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:5227 / 5235
页数:9
相关论文
共 50 条
  • [31] Tailored finite point method for solving one-dimensional Burgers' equation
    Tsai, Chih-Ching
    Shih, Yin-Tzer
    Lin, Yu-Tuan
    Wang, Hui-Ching
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (04) : 800 - 812
  • [32] About one approach to solving the inverse problem for parabolic equation
    Zhabko, A. P.
    Nurtazina, K. B.
    Provotorov, V. V.
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2019, 15 (03): : 323 - 336
  • [33] A METHOD FOR THE NUMERICAL-SOLUTION OF THE ONE-DIMENSIONAL INVERSE STEFAN PROBLEM
    REEMTSEN, R
    KIRSCH, A
    NUMERISCHE MATHEMATIK, 1984, 45 (02) : 253 - 273
  • [34] Numerical solution of a one-dimensional inverse problem by the discontinuous Galerkin method
    Epshteyn, Y.
    Khan, T.
    Riviere, B.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 79 (07) : 1989 - 2000
  • [35] A NUMERICAL-METHOD FOR SOLVING STEADY ONE-DIMENSIONAL DIFFUSION PROBLEM
    YAMADA, I
    HIRAOKA, S
    SUGIMOTO, H
    MORI, S
    KAGAKU KOGAKU RONBUNSHU, 1982, 8 (01) : 91 - 93
  • [36] Shannon-Taylor technique for solving one-dimensional inverse heat conduction problem
    Annaby, M. H.
    Al-Abdi, I. A.
    Ghaleb, A. F.
    Abou-Dina, M. S.
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2023, 40 (02) : 1107 - 1123
  • [37] Shannon-Taylor technique for solving one-dimensional inverse heat conduction problem
    M. H. Annaby
    I. A. Al-Abdi
    A. F. Ghaleb
    M. S. Abou-Dina
    Japan Journal of Industrial and Applied Mathematics, 2023, 40 : 1107 - 1123
  • [39] SOLUTION OF THE ONE-DIMENSIONAL INVERSE MAGNETOTELLURIC PROBLEM
    PEK, J
    CERV, V
    STUDIA GEOPHYSICA ET GEODAETICA, 1979, 23 (04) : 349 - 358
  • [40] One-Dimensional Inverse Scattering Problem in Acoustics
    Gerogiannis, Demetrios
    Sofianos, Sofianos Antoniou
    Lagaris, Isaac Elias
    Evangelakis, Georgios Antomiou
    BRAZILIAN JOURNAL OF PHYSICS, 2011, 41 (4-6) : 248 - 257