Finite volume method for solving a one-dimensional parabolic inverse problem

被引:14
|
作者
Wang, Bo [1 ,2 ]
Zou, Guang-an [2 ]
Zhao, Peng [2 ]
Wang, Qiang [3 ,4 ]
机构
[1] Henan Univ, Inst Appl Math, Kaifeng 475004, Peoples R China
[2] Henan Univ, Coll Math & Informat Sci, Kaifeng 475004, Peoples R China
[3] Tianjin Univ, Coll Mech Engn, Tianjin 300072, Peoples R China
[4] Tianjin Univ, Dept Math, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Parabolic partial differential equations; Inverse problem; Finite volume method; Difference schemes; HEAT-CONDUCTION PROBLEM; PARTIAL-DIFFERENTIAL-EQUATION; NUMERICAL-SOLUTION; CONTROL PARAMETER; SUBJECT;
D O I
10.1016/j.amc.2010.09.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, finite volume method is used to solve a one-dimensional parabolic inverse problem with source term and Neumann boundary conditions for the first time. Some advantages of this approach are developing difference schemes and maintaining certain properties of the physics of the problems, especially for the treatment of the source term and the unknown boundary conditions. Numerical results show that our method is more effective. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:5227 / 5235
页数:9
相关论文
共 50 条
  • [21] FINITE-RANGE SOLUTIONS TO ONE-DIMENSIONAL INVERSE SCATTERING PROBLEM
    PORTINARI, JC
    ANNALS OF PHYSICS, 1967, 45 (03) : 445 - +
  • [22] A method of fundamental solutions for the one-dimensional inverse Stefan problem
    Johansson, B. T.
    Lesnic, D.
    Reeve, T.
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (09) : 4367 - 4378
  • [23] One-Dimensional Inverse Scattering Problem
    Gaikovich, P. K.
    Sumin, M. I.
    Gaikovich, K. P.
    2011 13TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2011,
  • [24] Quasi-one-dimensional method for solving the inverse magnetotelluric problem
    Berezina, N. I.
    Dmitriev, V. I.
    Merschikova, N. A.
    IZVESTIYA-PHYSICS OF THE SOLID EARTH, 2013, 49 (03) : 350 - 355
  • [25] Quasi-one-dimensional method for solving the inverse magnetotelluric problem
    N. I. Berezina
    V. I. Dmitriev
    N. A. Merschikova
    Izvestiya, Physics of the Solid Earth, 2013, 49 : 350 - 355
  • [26] A New Method Based on Cluster Analysis for Solving One-dimensional Parabolic Equations
    Xu, Changzheng
    Chen, Linlin
    Liu, Cheng
    Chen, Jing
    2015 11TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2015, : 425 - 429
  • [27] A numerical method for solving a nonlinear inverse parabolic problem
    Pourgholi, R.
    Rostamian, M.
    Emamjome, M.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2010, 18 (08) : 1151 - 1164
  • [28] Variational Iteration Method for Solving an Inverse Parabolic Problem
    Huang, De-jian
    Li, Yan-qing
    FUZZY INFORMATION AND ENGINEERING AND DECISION, 2018, 646 : 321 - 327
  • [29] INVERSE CONTROL TYPE PROBLEM OF DETERMINING HIGHEST COEFFICIENT FOR A ONE-DIMENSIONAL PARABOLIC EQUATION
    Maharramli, Sh. I.
    PROCEEDINGS OF THE7TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL II, 2020, : 230 - 232
  • [30] A FINITE ELEMENT METHOD FOR THE ONE-DIMENSIONAL PRESCRIBED CURVATURE PROBLEM
    Brenner, Susanne C.
    Sung, Li-Yeng
    Wang, Zhuo
    Xu, Yuesheng
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2017, 14 (4-5) : 646 - 669