State-of-charge estimation for Lithium-Ion batteries using Kalman filters based on fractional-order models

被引:16
|
作者
Xing, Likun [1 ]
Ling, Liuyi [1 ,2 ]
Gong, Bing [1 ]
Zhang, Menglong [1 ]
机构
[1] Anhui Univ Sci & Technol, Sch Elect & Informat Technol, Huainan 232001, Peoples R China
[2] Anhui Univ Sci & Technol, Sch Artificial Intelligence, Huainan 232001, Peoples R China
关键词
Fractional calculus; Lithium-Ion batteries; state-of-charge; particle swarm optimisation algorithm; Kalman filter; ENERGY ESTIMATION; HEALTH ESTIMATION; NEURAL-NETWORK; OPTIMIZATION; ALGORITHM; OBSERVER; IDENTIFICATION; SEARCH; DESIGN;
D O I
10.1080/09540091.2021.1978930
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The accuracy of state of charge estimation results will directly affect the performance of battery management system. Due to such, we focus in this article on the SOC estimation of Lithium-Ion batteries based on a fractional second-order RC model with free noninteger differentiation orders. For such an estimation, three Kalman filters are employed: the adaptive extended Kalman filter (AEKF), extended Kalman filter (EKF), and Unscented Kalman Filter (UKF). The Fractional-Order Model (FOM) parameters and differentiation orders are identified by the Particle Swarm Optimization (PSO) algorithm, and a pulsed-discharge test is implemented to verify the accuracy of parameter identification. The output voltage error of the FOM model is much less than that of the Integer-Order Model (IOM). The FOM model has lower root-mean square error (RMSE), the mean absolute error (MAE), and the maximum absolute error (MAXAE) of SOC estimation than the IOM model during the SOC estimation regardless of AEKF, EKF or UKF. Experimental results show that the FOM can simulate the polarisation on effect and charge-discharge characteristics of the battery more realistically, demonstrating that the SOC estimation based on FOM is more accurate and promising than the one based on the IOM when using the same Kalman filters.
引用
收藏
页码:162 / 184
页数:23
相关论文
共 50 条
  • [41] An improved unscented Kalman filter for SOC estimation of lithium-ion batteries based on fractional-order model
    Wang, Yingying
    Ding, Jie
    Tu, Taotao
    IONICS, 2025,
  • [42] An Online Estimation Algorithm of State-of-Charge of Lithium-ion Batteries
    Feng, Yong
    Meng, Cheng
    Han, Fengling
    Yi, Xun
    Yu, Xinghuo
    IECON 2018 - 44TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2018, : 3879 - 3882
  • [43] Fractional Extended and Unscented Kalman Filtering for State of Charge Estimation of Lithium-Ion Batteries
    Kupper, Martin
    Funk, Christopher
    Eckert, Marius
    Hohmann, Soeren
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 3855 - 3862
  • [44] Outlier-Robust Extended Kalman Filter for State-of-Charge Estimation of Lithium-Ion Batteries
    Lee, Won Hyung
    Kim, Kwang-Ki K.
    IEEE ACCESS, 2023, 11 : 132766 - 132779
  • [45] State-of-Charge Estimation for Lithium-Ion Batteries Using Neural Networks and EKF
    Charkhgard, Mohammad
    Farrokhi, Mohammad
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2010, 57 (12) : 4178 - 4187
  • [46] State of Charge Estimation of Lithium-Ion Batteries Based on Fractional-Order Model with Mul-ti-Innovations Dual Cubature Kalman Filter Method
    Li, Xin
    Song, Yangwanhao
    Ren, Hengqi
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (09)
  • [47] Secure state of charge estimation for lithium-ion batteries under deception attacks based on attack-resilient fractional-order extended Kalman filter
    Yang, Tong
    Li, Yan
    Zeng, Yi
    JOURNAL OF ENERGY STORAGE, 2024, 95
  • [48] State-of-Charge Estimation Method for Lithium-Ion Batteries Using Extended Kalman Filter With Adaptive Battery Parameters
    Yun, Jaejung
    Choi, Yeonho
    Lee, Jaehyung
    Choi, Seonggon
    Shin, Changseop
    IEEE ACCESS, 2023, 11 : 90901 - 90915
  • [49] Online State-of-Charge Estimation for Lithium-ion Batteries Based on the ARX Model
    Nie W.
    Tan W.
    Qiu G.
    Li C.
    Nie X.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2018, 38 (18): : 5415 - 5424
  • [50] A New State of Charge Estimation Algorithm for Lithium-Ion Batteries Based on the Fractional Unscented Kalman Filter
    Chen, Yixing
    Huang, Deqing
    Zhu, Qiao
    Liu, Weiqun
    Liu, Congzhi
    Xiong, Neng
    ENERGIES, 2017, 10 (09)