State-of-charge estimation for Lithium-Ion batteries using Kalman filters based on fractional-order models

被引:16
|
作者
Xing, Likun [1 ]
Ling, Liuyi [1 ,2 ]
Gong, Bing [1 ]
Zhang, Menglong [1 ]
机构
[1] Anhui Univ Sci & Technol, Sch Elect & Informat Technol, Huainan 232001, Peoples R China
[2] Anhui Univ Sci & Technol, Sch Artificial Intelligence, Huainan 232001, Peoples R China
关键词
Fractional calculus; Lithium-Ion batteries; state-of-charge; particle swarm optimisation algorithm; Kalman filter; ENERGY ESTIMATION; HEALTH ESTIMATION; NEURAL-NETWORK; OPTIMIZATION; ALGORITHM; OBSERVER; IDENTIFICATION; SEARCH; DESIGN;
D O I
10.1080/09540091.2021.1978930
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The accuracy of state of charge estimation results will directly affect the performance of battery management system. Due to such, we focus in this article on the SOC estimation of Lithium-Ion batteries based on a fractional second-order RC model with free noninteger differentiation orders. For such an estimation, three Kalman filters are employed: the adaptive extended Kalman filter (AEKF), extended Kalman filter (EKF), and Unscented Kalman Filter (UKF). The Fractional-Order Model (FOM) parameters and differentiation orders are identified by the Particle Swarm Optimization (PSO) algorithm, and a pulsed-discharge test is implemented to verify the accuracy of parameter identification. The output voltage error of the FOM model is much less than that of the Integer-Order Model (IOM). The FOM model has lower root-mean square error (RMSE), the mean absolute error (MAE), and the maximum absolute error (MAXAE) of SOC estimation than the IOM model during the SOC estimation regardless of AEKF, EKF or UKF. Experimental results show that the FOM can simulate the polarisation on effect and charge-discharge characteristics of the battery more realistically, demonstrating that the SOC estimation based on FOM is more accurate and promising than the one based on the IOM when using the same Kalman filters.
引用
收藏
页码:162 / 184
页数:23
相关论文
共 50 条
  • [31] State-of-charge estimation of lithium-ion batteries using LSTM and UKF
    Yang, Fangfang
    Zhang, Shaohui
    Li, Weihua
    Miao, Qiang
    ENERGY, 2020, 201 (201)
  • [32] State of Charge Estimation of Lithium-ion Battery Using Kalman Filters
    Baba, Atsushi
    Adachi, Shuichi
    2012 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS (CCA), 2012, : 409 - 414
  • [33] State-of-charge estimation of lithium-ion batteries based on ultrasonic detection
    Cai, Zhiduan
    Pan, Tianle
    Jiang, Haoye
    Li, Zuxin
    Wang, Yulong
    JOURNAL OF ENERGY STORAGE, 2023, 65
  • [34] State of Charge Estimation for Lithium-ion Batteries Based on Adaptive Fractional Extended Kalman Filter
    Li, Shizhong
    Li, Yan
    Sun, Yue
    Zhao, Daduan
    Zhang, Chenghui
    PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20), 2020, : 266 - 271
  • [35] State of charge estimation for lithium-ion batteries based on fractional order multiscale algorithm
    Guo, Haisheng
    Han, Xudong
    Yang, Run
    Shi, Jinjin
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [36] A novel fractional order model based state-of-charge estimation method for lithium-ion battery
    Mu, Hao
    Xiong, Rui
    Zheng, Hongfei
    Chang, Yuhua
    Chen, Zeyu
    APPLIED ENERGY, 2017, 207 : 384 - 393
  • [37] State-of-Charge Estimation of Lithium-ion Battery Based on an Improved Kalman Filter
    Fang, Hao
    Zhang, Yue
    Liu, Min
    Shen, Weiming
    2017 IEEE 21ST INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2017, : 515 - 520
  • [38] An Adaptive Kalman Filter to Estimate State-of-Charge of Lithium-Ion Batteries
    Luo, Zhiliang
    Li, Yanjie
    Lou, Yunjiang
    2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2015, : 1227 - 1232
  • [39] State-of-charge estimation for lithium-ion batteries based on modified unscented Kalman filter using improved parameter identification
    Yao, Bin
    Cai, Yongxiang
    Liu, Wei
    Wang, Yang
    Chen, Xin
    Liao, Qiangqiang
    Fu, Zaiguo
    Cheng, Zhiyuan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2024, 19 (05):
  • [40] Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries
    Shrivastava, Prashant
    Soon, Tey Kok
    Bin Idris, Mohd Yamani Idna
    Mekhilef, Saad
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 113