Composite semi-infinite optimization

被引:0
|
作者
Dentcheva, Darinka [1 ]
Ruszczynski, Andrzej [2 ]
机构
[1] Stevens Inst Technol, Dept Math Sci, Hoboken, NJ 07030 USA
[2] Rutgers State Univ, Dept Management Sci & Informat Syst, Piscataway, NJ 08854 USA
来源
CONTROL AND CYBERNETICS | 2007年 / 36卷 / 03期
关键词
semi-infinite optimization; nonsmooth optimization; composite optimization; stochastic programming; stochastic dominance;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a semi-infinite optimization problem in Banach spaces, where both the objective functional and the constraint operator are compositions of convex nonsmooth mappings and differentiable mappings. We derive necessary optimality conditions for these problems. Finally, we apply these results to nonconvex stochastic optimization problems with stochastic dominance constraints, generalizing earlier results.
引用
收藏
页码:633 / 646
页数:14
相关论文
共 50 条
  • [21] Copositive Programming via Semi-Infinite Optimization
    Ahmed, Faizan
    Duer, Mirjam
    Still, Georg
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 159 (02) : 322 - 340
  • [22] Stability in unified semi-infinite vector optimization
    Kapoor, Shiva
    Lalitha, C. S.
    JOURNAL OF GLOBAL OPTIMIZATION, 2019, 74 (02) : 383 - 399
  • [23] An approximation of feasible sets in semi-infinite optimization
    Francisco Guerra Vázquez
    Jan-J. Rückmann
    Top, 2002, 10 (2) : 325 - 336
  • [24] A Generic Result in Linear Semi-Infinite Optimization
    Miguel A. Goberna
    Marco A. López
    Maxim I. Todorov
    Applied Mathematics and Optimization, 2003, 48 : 181 - 193
  • [25] How to solve a semi-infinite optimization problem
    Stein, Oliver
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2012, 223 (02) : 312 - 320
  • [26] A generic result in linear semi-infinite optimization
    Goberna, MA
    López, MA
    Todorov, MI
    APPLIED MATHEMATICS AND OPTIMIZATION, 2003, 48 (03): : 181 - 193
  • [27] Copositive Programming via Semi-Infinite Optimization
    Faizan Ahmed
    Mirjam Dür
    Georg Still
    Journal of Optimization Theory and Applications, 2013, 159 : 322 - 340
  • [28] Inverse optimization in semi-infinite linear programs
    Ghate, Archis
    OPERATIONS RESEARCH LETTERS, 2020, 48 (03) : 278 - 285
  • [29] ON SEMI-INFINITE OPTIMIZATION AND TSCHEBYSCHEFF APPROXIMATION WITH CONSTRAINTS
    STRAUSS, H
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1985, 8 (1-2) : 153 - 171
  • [30] On stable uniqueness in linear semi-infinite optimization
    M. A. Goberna
    M. I. Todorov
    V. N. Vera de Serio
    Journal of Global Optimization, 2012, 53 : 347 - 361