Composite semi-infinite optimization

被引:0
|
作者
Dentcheva, Darinka [1 ]
Ruszczynski, Andrzej [2 ]
机构
[1] Stevens Inst Technol, Dept Math Sci, Hoboken, NJ 07030 USA
[2] Rutgers State Univ, Dept Management Sci & Informat Syst, Piscataway, NJ 08854 USA
来源
CONTROL AND CYBERNETICS | 2007年 / 36卷 / 03期
关键词
semi-infinite optimization; nonsmooth optimization; composite optimization; stochastic programming; stochastic dominance;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a semi-infinite optimization problem in Banach spaces, where both the objective functional and the constraint operator are compositions of convex nonsmooth mappings and differentiable mappings. We derive necessary optimality conditions for these problems. Finally, we apply these results to nonconvex stochastic optimization problems with stochastic dominance constraints, generalizing earlier results.
引用
收藏
页码:633 / 646
页数:14
相关论文
共 50 条
  • [11] The generalized semi-infinite optimization problems
    Ruckmann, JJ
    KOI'96 - 6TH INTERNATIONAL CONFERENCE ON OPERATIONAL RESEARCH, PROCEEDINGS, 1996, : 23 - 23
  • [12] A fuzzy semi-infinite optimization problem
    Abd El-Monem A Megahed
    Journal of Inequalities and Applications, 2014
  • [13] Semi-Infinite Optimization with Implicit Functions
    Stuber, Matthew D.
    Barton, Paul I.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2015, 54 (01) : 307 - 317
  • [14] Semi-Infinite Optimization with Hybrid Models
    Wang, Chenyu
    Wilhelm, Matthew E.
    Stuber, Matthew D.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (15) : 5239 - 5254
  • [15] A fuzzy semi-infinite optimization problem
    Megahed, Abd El-Monem A.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [16] On the topology of generalized semi-infinite optimization
    Weber, GW
    JOURNAL OF CONVEX ANALYSIS, 2002, 9 (02) : 665 - 691
  • [17] On duality in multiobjective semi-infinite optimization
    Guerra-Vazquez, Francisco
    Ruckmann, Jan-J.
    OPTIMIZATION, 2017, 66 (08) : 1237 - 1249
  • [18] An algorithm for semi-infinite polynomial optimization
    J. B. Lasserre
    TOP, 2012, 20 : 119 - 129
  • [19] A penetration model for semi-infinite composite targets
    Nguyen, Long H.
    Ryan, Shannon
    Orifici, Adrian C.
    Cimpoeru, Stephen J.
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2020, 137
  • [20] GREENS FUNCTION FOR A COMPOSITE SEMI-INFINITE SLAB
    ROGERS, GJ
    FOX, PF
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1973, 6 (06) : 651 - 656