On a theorem of Friedlander and Iwaniec

被引:0
|
作者
Bourgain, Jean [1 ]
Kontorovich, Alex [1 ,2 ]
机构
[1] Inst Adv Study, Dept Math, Princeton, NJ 08540 USA
[2] Brown Univ, Dept Math, Providence, RI 02912 USA
关键词
QUADRATIC-FORMS; LOCAL-DENSITIES;
D O I
10.1016/j.crma.2010.08.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 131, Friedlander and Iwaniec (2009) studied the so-called Hyperbolic Prime Number Theorem, which asks for an infinitude of elements [GRAPHICS] such that the norm squared parallel to gamma parallel to(2)=a(2)+b(2)+c(2)+d(2)=p, is a prime. Under the Elliott-Halberstam conjecture, they proved the existence of such, as well as a formula for their count, off by a constant from the conjectured asymptotic. In this Note, we study the analogous question replacing the integers with the Gaussian integers. We prove unconditionally that for every odd n >= 3, there is a gamma epsilon SL(2. Z[i]) such that parallel to y parallel to(2) = n. In particular, every prime is represented. The proof is an application of Siegel's mass formula. (C) 2010 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:947 / 950
页数:4
相关论文
共 50 条
  • [31] Lee Friedlander
    Armstrong, C
    ARTFORUM INTERNATIONAL, 2005, 44 (01): : 293 - 294
  • [32] FRIEDLANDER,JOHNY
    DALEMANS, R
    GOYA, 1975, (129): : 184 - +
  • [33] Lee Friedlander
    Klein, M
    ART IN AMERICA, 1999, 87 (10): : 168 - 168
  • [34] Marti Friedlander
    Brookes, Barbara
    NEW ZEALAND JOURNAL OF HISTORY, 2011, 45 (02): : 248 - 249
  • [35] FRIEDLANDER,G
    不详
    CHEMICAL & ENGINEERING NEWS, 1967, 45 (12) : 74 - &
  • [36] Michal Friedlander
    Friedlander, Michal
    EUROPEAN JUDAISM-A JOURNAL FOR THE NEW EUROPE, 2018, 51 (01) : 59 - 60
  • [37] FRIEDLANDER,LEE
    不详
    CONNAISSANCE DES ARTS, 1991, (473-74): : 24 - 24
  • [38] Differential inequalities for Iwaniec's q functions
    Diamond, HG
    Halberstam, H
    NUMBER THEORY IN PROGRESS, VOLS 1 AND 2: VOL 1: DIOPHANTINE PROBLEMS AND POLYNOMIALS; VOL 2: ELEMENTARY AND ANALYTIC NUMBER THEORY;, 1999, : 721 - 735
  • [39] Lee Friedlander
    Pollack, B
    ARTNEWS, 2005, 104 (08): : 126 - 126
  • [40] Lee Friedlander
    不详
    CONNAISSANCE DES ARTS, 2006, (642): : 34 - 34