On a theorem of Friedlander and Iwaniec

被引:0
|
作者
Bourgain, Jean [1 ]
Kontorovich, Alex [1 ,2 ]
机构
[1] Inst Adv Study, Dept Math, Princeton, NJ 08540 USA
[2] Brown Univ, Dept Math, Providence, RI 02912 USA
关键词
QUADRATIC-FORMS; LOCAL-DENSITIES;
D O I
10.1016/j.crma.2010.08.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 131, Friedlander and Iwaniec (2009) studied the so-called Hyperbolic Prime Number Theorem, which asks for an infinitude of elements [GRAPHICS] such that the norm squared parallel to gamma parallel to(2)=a(2)+b(2)+c(2)+d(2)=p, is a prime. Under the Elliott-Halberstam conjecture, they proved the existence of such, as well as a formula for their count, off by a constant from the conjectured asymptotic. In this Note, we study the analogous question replacing the integers with the Gaussian integers. We prove unconditionally that for every odd n >= 3, there is a gamma epsilon SL(2. Z[i]) such that parallel to y parallel to(2) = n. In particular, every prime is represented. The proof is an application of Siegel's mass formula. (C) 2010 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:947 / 950
页数:4
相关论文
共 50 条
  • [21] FRIEDLANDER,LEE
    STANISZEWSKI, MA
    ARTNEWS, 1980, 79 (06): : 229 - 229
  • [22] FRIEDLANDER,LEE
    CALLAWAY, N
    CONNAISSANCE DES ARTS, 1980, (336): : 44 - 49
  • [23] FRIEDLANDER,LEE
    BERKSON, B
    ARTFORUM, 1990, 29 (04): : 145 - 146
  • [24] Lee Friedlander
    Aletti, V
    ARTFORUM INTERNATIONAL, 2005, 43 (09): : 103 - 103
  • [25] FRIEDLANDER,LEE
    WALLIS, B
    ARTS MAGAZINE, 1980, 54 (10): : 30 - 31
  • [26] FRIEDLANDER,LEE
    KARMEL, P
    ART IN AMERICA, 1980, 68 (06): : 158 - 159
  • [27] FRIEDLANDER,LEE
    HAGEN, C
    ARTFORUM, 1984, 22 (05): : 77 - 78
  • [28] FRIEDLANDER,LEE
    HARRIS, SA
    ARTS MAGAZINE, 1983, 58 (04): : 41 - 41
  • [29] FRIEDLANDER,LEE
    CRIQUI, JP
    ARTFORUM, 1992, 31 (01): : 109 - 109
  • [30] FRIEDLANDER,JOHNNY
    SCHRIJVER, E
    BURLINGTON MAGAZINE, 1977, 119 (888): : 217 - &