Largest adjacency, signless Laplacian, and Laplacian H-eigenvalues of loose paths

被引:7
|
作者
Yue, Junjie [1 ,2 ]
Zhang, Liping [1 ]
Lu, Mei [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Chinese Acad Sci, State Key Lab Space Weather, Beijing 100910, Peoples R China
基金
中国国家自然科学基金;
关键词
H-eigenvalue; hypergraph; adjacency tensor; signless Laplacian tensor; Laplacian tensor; loose path; NONNEGATIVE TENSORS; HYPERGRAPHS;
D O I
10.1007/s11464-015-0452-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate k-uniform loose paths. We show that the largest H-eigenvalues of their adjacency tensors, Laplacian tensors, and signless Laplacian tensors are computable. For a k-uniform loose path with length l >= 3, we show that the largest H-eigenvalue of its adjacency tensor is ((1 + root 5)/2)(2/k) when l = 3 and lambda(A) = 3(1/k) when l = 4, respectively. For the case of l >= 5, we tighten the existing upper bound 2. We also show that the largest H-eigenvalue of its signless Laplacian tensor lies in the interval (2, 3) when l >= 5. Finally, we investigate the largest H-eigenvalue of its Laplacian tensor when k is even and we tighten the upper bound 4.
引用
收藏
页码:623 / 645
页数:23
相关论文
共 50 条
  • [41] On the second largest eigenvalue of the signless Laplacian
    de Lima, Leonardo Silva
    Nikiforov, Vladimir
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (03) : 1215 - 1222
  • [42] Laplacian and signless Laplacian Z-eigenvalues of uniform hypergraphs
    Bu, Changjiang
    Fan, Yamin
    Zhou, Jiang
    FRONTIERS OF MATHEMATICS IN CHINA, 2016, 11 (03) : 511 - 520
  • [43] On the sum of signless Laplacian eigenvalues of a graph
    Ashraf, F.
    Omidi, G. R.
    Tayfeh-Rezaie, B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (11) : 4539 - 4546
  • [44] THE MAXIMUM CLIQUE AND THE SIGNLESS LAPLACIAN EIGENVALUES
    Liu, Jianping
    Liu, Bolian
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (04) : 1233 - 1240
  • [45] Distance signless Laplacian eigenvalues of graphs
    Kinkar Chandra Das
    Huiqiu Lin
    Jiming Guo
    Frontiers of Mathematics in China, 2019, 14 : 693 - 713
  • [46] Signless Laplacian eigenvalues and circumference of graphs
    Wang, JianFeng
    Belardo, Francesco
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (10-11) : 1610 - 1617
  • [47] Distance signless Laplacian eigenvalues of graphs
    Das, Kinkar Chandra
    Lin, Huiqiu
    Guo, Jiming
    FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (04) : 693 - 713
  • [48] A note on the signless Laplacian eigenvalues of graphs
    Wang, Jianfeng
    Belardo, Francesco
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) : 2585 - 2590
  • [49] Ordering Quasi-Tree Graphs by the Second Largest Signless Laplacian Eigenvalues
    Zhen LIN
    Shuguang GUO
    Lianying MIAO
    JournalofMathematicalResearchwithApplications, 2020, 40 (05) : 453 - 466
  • [50] The sum of the first two largest signless laplacian eigenvalues of trees and unicyclic graphs
    Du, Zhibin
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2019, 35 : 449 - 467