Largest adjacency, signless Laplacian, and Laplacian H-eigenvalues of loose paths

被引:7
|
作者
Yue, Junjie [1 ,2 ]
Zhang, Liping [1 ]
Lu, Mei [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Chinese Acad Sci, State Key Lab Space Weather, Beijing 100910, Peoples R China
基金
中国国家自然科学基金;
关键词
H-eigenvalue; hypergraph; adjacency tensor; signless Laplacian tensor; Laplacian tensor; loose path; NONNEGATIVE TENSORS; HYPERGRAPHS;
D O I
10.1007/s11464-015-0452-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate k-uniform loose paths. We show that the largest H-eigenvalues of their adjacency tensors, Laplacian tensors, and signless Laplacian tensors are computable. For a k-uniform loose path with length l >= 3, we show that the largest H-eigenvalue of its adjacency tensor is ((1 + root 5)/2)(2/k) when l = 3 and lambda(A) = 3(1/k) when l = 4, respectively. For the case of l >= 5, we tighten the existing upper bound 2. We also show that the largest H-eigenvalue of its signless Laplacian tensor lies in the interval (2, 3) when l >= 5. Finally, we investigate the largest H-eigenvalue of its Laplacian tensor when k is even and we tighten the upper bound 4.
引用
收藏
页码:623 / 645
页数:23
相关论文
共 50 条
  • [31] Bounds for the extreme eigenvalues of the laplacian and signless laplacian of a graph
    Kolotilina L.Y.
    Journal of Mathematical Sciences, 2012, 182 (6) : 803 - 813
  • [32] On sum of powers of the Laplacian and signless Laplacian eigenvalues of graphs
    Akbari, Saieed
    Ghorbani, Ebrahim
    Koolen, Jacobus H.
    Oboudi, Mohammad Reza
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [33] On distance Laplacian and distance signless Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    Aouchiche, Mustapha
    Hansen, Pierre
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (11): : 2307 - 2324
  • [34] A characterization of strongly regular graphs in terms of the largest signless Laplacian eigenvalues
    Fan, Feng-lei
    Weng, Chih-wen
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 506 : 1 - 5
  • [35] A relation between the Laplacian and signless Laplacian eigenvalues of a graph
    Akbari, Saieed
    Ghorbani, Ebrahim
    Koolen, Jack H.
    Oboudi, Mohammad Reza
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 32 (03) : 459 - 464
  • [36] Proof of conjectures involving the largest and the smallest signless Laplacian eigenvalues of graphs
    Das, Kinkar Ch
    DISCRETE MATHEMATICS, 2012, 312 (05) : 992 - 998
  • [37] Laplacian and signless Laplacian Z-eigenvalues of uniform hypergraphs
    Changjiang Bu
    Yamin Fan
    Jiang Zhou
    Frontiers of Mathematics in China, 2016, 11 : 511 - 520
  • [38] The maximum clique and the signless Laplacian eigenvalues
    Jianping Liu
    Bolian Liu
    Czechoslovak Mathematical Journal, 2008, 58 : 1233 - 1240
  • [39] ON THE MAIN SIGNLESS LAPLACIAN EIGENVALUES OF A GRAPH
    Deng, Hanyuan
    Huang, He
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 381 - 393
  • [40] MAJORIZATION BOUNDS FOR SIGNLESS LAPLACIAN EIGENVALUES
    Maden, A. Dilek
    Cevik, A. Sinan
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 781 - 794