Discriminating Quantum States with Quantum Machine Learning

被引:1
|
作者
Quiroga, David [1 ]
Date, Prasanna [2 ]
Pooser, Raphael [3 ]
机构
[1] Univ Antioquia, Engn Fac, Medellin, Colombia
[2] Oak Ridge Natl Lab, Comp Sci & Math, Oak Ridge, TN USA
[3] Oak Ridge Natl Lab, Computat Sci & Engn, Oak Ridge, TN USA
关键词
Quantum Computing; Machine Learning; Quantum Machine Learning; K-Means; QK-Means; Crosstalk;
D O I
10.1109/ICRC53822.2021.00018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantum machine learning (QML) algorithms have obtained great relevance in the machine learning (ML) field due to the promise of quantum speedups when performing basic linear algebra subroutines (BLAS), a fundamental element in most ML algorithms. By making use of BLAS operations, we propose, implement and analyze a quantum k-means (qk-means) algorithm with a low time complexity of O(NKlog(D)I/C) to apply it to the fundamental problem of discriminating quantum states at readout. Discriminating quantum states allows the identification of quantum states vertical bar 0 > and vertical bar 1 > from low-level in-phase and quadrature signal (IQ) data, and can be done using custom ML models. In order to reduce dependency on a classical computer, we use the qk-means to perform state discrimination on the IBMQ Bogota device and managed to find assignment fidelities of up to 98.7% that were only marginally lower than that of the k-means algorithm. We also performed a cross-talk benchmark on the quantum device by applying both algorithms to perform state discrimination on a combination of quantum states and using Pearson Correlation coefficients and assignment fidelities of discrimination results to conclude on the presence of cross-talk on qubits. Evidence shows cross-talk in the (1, 2) and (2, 3) neighboring qubit couples for the analyzed device.
引用
收藏
页码:56 / 63
页数:8
相关论文
共 50 条
  • [41] Quantum Machine Learning with SQUID
    Roggero, Alessandro
    Filipek, Jakub
    Hsu, Shih-Chieh
    Wiebe, Nathan
    QUANTUM, 2022, 6
  • [42] Federated Quantum Machine Learning
    Chen, Samuel Yen-Chi
    Yoo, Shinjae
    ENTROPY, 2021, 23 (04)
  • [43] On the Capabilities of Quantum Machine Learning
    Alghamdi, Sarah
    Almuhammadi, Sultan
    2022 7TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND MACHINE LEARNING APPLICATIONS (CDMA 2022), 2022, : 181 - 187
  • [44] Quantum machine learning in ophthalmology
    Masalkhi, Mouayad
    Ong, Joshua
    Waisberg, Ethan
    Lee, Andrew G.
    EYE, 2024, 38 (15) : 2857 - 2858
  • [45] Quantum adiabatic machine learning
    Pudenz, Kristen L.
    Lidar, Daniel A.
    QUANTUM INFORMATION PROCESSING, 2013, 12 (05) : 2027 - 2070
  • [46] Quantum dynamics of machine learning
    Wang, Peng
    Maimaitiniyazi, Maimaitiabudula
    ACTA PHYSICA SINICA, 2025, 74 (06)
  • [47] Quantum Machine Learning Playground
    Debus, Pascal
    Issel, Sebastian
    Tscharke, Kilian
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2024, 44 (05) : 40 - 53
  • [48] A Future with Quantum Machine Learning
    DeBenedictis, Erik P.
    COMPUTER, 2018, 51 (02) : 68 - 71
  • [49] Machine learning for quantum matter
    Carrasquilla, Juan
    ADVANCES IN PHYSICS-X, 2020, 5 (01):
  • [50] Shadows of quantum machine learning
    Jerbi, Sofiene
    Gyurik, Casper
    Marshall, Simon C.
    Molteni, Riccardo
    Dunjko, Vedran
    NATURE COMMUNICATIONS, 2024, 15 (01)