Optimal Linear Codes Over the Field of Order 7

被引:0
|
作者
Nomura, Keita [1 ]
Maruta, Tatsuya [1 ]
机构
[1] Osaka Prefecture Univ, Dept Math Sci, Sakai, Osaka 5998531, Japan
关键词
linear code; divisible code; projective dual;
D O I
10.1109/ACCT51235.2020.9383246
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We construct some new linear codes over the field of order 7 to determine the exact value of the minimum length for which a linear code of dimension four with given minimum weight exists for some open cases. Most of the new codes are constructed as projective duals of some 7-divisible codes from some orbits of a projectivity in the projective space.
引用
收藏
页码:113 / 117
页数:5
相关论文
共 50 条
  • [31] A Subfield-Based Construction of Optimal Linear Codes Over Finite Fields
    Hu, Zhao
    Li, Nian
    Zeng, Xiangyong
    Wang, Lisha
    Tang, Xiaohu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (07) : 4408 - 4421
  • [32] Constacyclic -linear codes over
    Cao, Yonglin
    Chang, Xingxing
    Cao, Yuan
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2015, 26 (04) : 369 - 388
  • [33] Two Families of Optimal Linear Codes and Their Subfield Codes
    Heng, Ziling
    Wang, Qiuyan
    Ding, Cunsheng
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (11) : 6872 - 6883
  • [34] Convolutional codes from ''optimal'' linear block codes
    Ray, GA
    THIRTIETH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 1997, : 853 - 857
  • [35] SOME RESULTS ON THE STRUCTURE OF CONSTACYCLIC CODES AND NEW LINEAR CODES OVER GF(7) FROM QUASI-TWISTED CODES
    Aydin, Nuh
    Connolly, Nicholas
    Grassl, Markus
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2017, 11 (01) : 245 - 258
  • [36] On the geometric constructions of optimal linear codes
    Kageyama, Yuuki
    Maruta, Tatsuya
    DESIGNS CODES AND CRYPTOGRAPHY, 2016, 81 (03) : 469 - 480
  • [37] Optimal Locally Repairable Linear Codes
    Song, Wentu
    Dau, Son Hoang
    Yuen, Chau
    Li, Tiffany Jing
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (05) : 1019 - 1036
  • [39] On the geometric constructions of optimal linear codes
    Yuuki Kageyama
    Tatsuya Maruta
    Designs, Codes and Cryptography, 2016, 81 : 469 - 480
  • [40] NEW OPTIMAL TERNARY LINEAR CODES
    GULLIVER, TA
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (04) : 1182 - 1185