Optimal Linear Codes Over the Field of Order 7

被引:0
|
作者
Nomura, Keita [1 ]
Maruta, Tatsuya [1 ]
机构
[1] Osaka Prefecture Univ, Dept Math Sci, Sakai, Osaka 5998531, Japan
关键词
linear code; divisible code; projective dual;
D O I
10.1109/ACCT51235.2020.9383246
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We construct some new linear codes over the field of order 7 to determine the exact value of the minimum length for which a linear code of dimension four with given minimum weight exists for some open cases. Most of the new codes are constructed as projective duals of some 7-divisible codes from some orbits of a projectivity in the projective space.
引用
收藏
页码:113 / 117
页数:5
相关论文
共 50 条
  • [11] Hexagonal metric for linear codes over a finite field
    Gao, Ying
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2011, 24 (03) : 593 - 603
  • [12] Optimal linear rate 1/2 codes over F5 and F7
    Guiliver, TA
    Östergård, PRJ
    Senkevitch, N
    DISCRETE MATHEMATICS, 2003, 265 (1-3) : 59 - 70
  • [13] Hexagonal metric for linear codes over a finite field
    Ying Gao
    Journal of Systems Science and Complexity, 2011, 24 : 593 - 603
  • [14] Hexagonal metric for linear codes over a finite field
    School of Mathematics and Systems Science, Beihang University, LMIB of the ministry of Education, Beijing 100191, China
    J. Syst. Sci. Complex., 3 (593-603):
  • [15] HEXAGONAL METRIC FOR LINEAR CODES OVER A FINITE FIELD
    Ying GAO School of Mathematics and Systems Science
    Journal of Systems Science & Complexity, 2011, 24 (03) : 593 - 603
  • [16] Some optimal Fq-linear codes over Fql
    Li, Juan
    Gao, Yun
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024,
  • [17] Optimal linear codes of dimension 4 over GF(5)
    Landjev, IN
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, 1997, 1255 : 212 - 220
  • [18] NEW OPTIMAL LINEAR CODES OVER Z4
    TANG, H. O. P. E. I. N. C. H. R. I. S. T. O. F. E. N.
    SUPRIJANTO, D. J. O. K. O.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023, 107 (01) : 158 - 169
  • [19] A new method on the construction of optimal codes over finite field
    Ding, Jian
    Li, Hong-Ju
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2015, 43 (08): : 1662 - 1667
  • [20] On the minimum length of linear codes over the field of 9 elements
    Kumegawa, Kazuki
    Okazaki, Tsukasa
    Maruta, Tatsuya
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (01):