The influence of crystal electrical field on first- and second-order magnetic phase transition in Praseodymium intermetallics

被引:0
|
作者
von Ranke, PJ
de Oliveira, NA
Caldas, A
机构
[1] Univ Fed Rio de Janeiro, Inst Fis, BR-20550013 Rio De Janeiro, RJ, Brazil
[2] Univ Gama Filho, Dept Fis, BR-20748280 Rio De Janeiro, RJ, Brazil
来源
PHYSICA A | 1998年 / 256卷 / 3-4期
关键词
Landau phase transition; rare-earth intermetallics; crystal field;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In order to investigate the influence of crystal electrical field on determining the first- or second-order ferromagnetic-paramagnetic phase transition, we have considered Praseodymium intermetallics systems PrX2 (X = Al,Ni,Rh,Ru,Mg), Using a theoretical model which takes into account the crystal field and exchange interaction, we have studied in analytical form the Landau free energy as a function of the model parameters, that leads to a phase diagram, which permits to show that the existence of first- or second-order magnetic phase transitions is strongly related to the magnitude of crystal field and critical temperature. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:397 / 405
页数:9
相关论文
共 50 条
  • [21] First- and second-order adjustments to globalization
    Soesastro, Hadi
    CHALLENGES TO THE GLOBAL TRADING SYSTEM, 2007, : 220 - 221
  • [22] A mean-field scaling method for first- and second-order phase transition ferromagnets and its application in magnetocaloric studies
    Amaral, J. S.
    Silva, N. J. O.
    Amaral, V. S.
    APPLIED PHYSICS LETTERS, 2007, 91 (17)
  • [23] Transition to synchronization in a Kuramoto model with the first- and second-order interaction terms
    Li, Keren
    Ma, Shen
    Li, Haihong
    Yang, Junzhong
    PHYSICAL REVIEW E, 2014, 89 (03):
  • [24] Effects of first- and second-order topological phases on equilibrium crystal shapes
    Tanaka, Yutaro
    Murakami, Shuichi
    PHYSICAL REVIEW B, 2023, 107 (24)
  • [25] On a Proper Account of First- and Second-Order Size Effects in Crystal Plasticity
    Geers, Marc G. D.
    Peerlings, Ron H. J.
    Hoefnagels, Johan P. M.
    Kasyanyuk, Yuriy
    ADVANCED ENGINEERING MATERIALS, 2009, 11 (03) : 143 - 147
  • [26] Diagnosing first- and second-order phase transitions with probes of quantum chaos
    Huh, Kyoung-Bum
    Ikeda, Kazuki
    Jahnke, Viktor
    Kim, Keun-Young
    PHYSICAL REVIEW E, 2021, 104 (02)
  • [27] Coexisting first- and second-order electronic phase transitions in a correlated oxide
    Post, K. W.
    McLeod, A. S.
    Hepting, M.
    Bluschke, M.
    Wang, Yifan
    Cristiani, G.
    Logvenov, G.
    Charnukha, A.
    Ni, G. X.
    Radhakrishnan, Padma
    Minola, M.
    Pasupathy, A.
    Boris, A., V
    Benckiser, E.
    Dahmen, K. A.
    Carlson, E. W.
    Keimer, B.
    Basov, D. N.
    NATURE PHYSICS, 2018, 14 (10) : 1056 - +
  • [28] First- and second-order phase transitions in the Holstein-Hubbard model
    Koller, W
    Meyer, D
    Ono, Y
    Hewson, AC
    EUROPHYSICS LETTERS, 2004, 66 (04): : 559 - 564
  • [29] Coexisting first- and second-order electronic phase transitions in a correlated oxide
    K. W. Post
    A. S. McLeod
    M. Hepting
    M. Bluschke
    Yifan Wang
    G. Cristiani
    G. Logvenov
    A. Charnukha
    G. X. Ni
    Padma Radhakrishnan
    M. Minola
    A. Pasupathy
    A. V. Boris
    E. Benckiser
    K. A. Dahmen
    E. W. Carlson
    B. Keimer
    D. N. Basov
    Nature Physics, 2018, 14 : 1056 - 1061
  • [30] Exceptional points near first- and second-order quantum phase transitions
    Stransky, Pavel
    Dvorak, Martin
    Cejnar, Pavel
    PHYSICAL REVIEW E, 2018, 97 (01)