Exceptional points near first- and second-order quantum phase transitions

被引:13
|
作者
Stransky, Pavel [1 ]
Dvorak, Martin [1 ]
Cejnar, Pavel [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, V Holesovickach 2, CR-18000 Prague, Czech Republic
关键词
SYSTEMS; MODEL; CLASSIFICATION; BEHAVIOR; SPECTRA; STATES;
D O I
10.1103/PhysRevE.97.012112
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the impact of quantum phase transitions (QPTs) on the distribution of exceptional points (EPs) of the Hamiltonian in the complex-extended parameter domain. Analyzing first-and second-order QPTs in the Lipkin-Meshkov-Glick model we find an exponentially and polynomially close approach of EPs to the respective critical point with increasing size of the system. If the critical Hamiltonian is subject to random perturbations of various kinds, the averaged distribution of EPs close to the critical point still carries decisive information on the QPT type. We therefore claim that properties of the EP distribution represent a parametrization-independent signature of criticality in quantum systems.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Microkinetics of the first- and second-order phase transitions
    Stepanov, VA
    PHASE TRANSITIONS, 2005, 78 (7-8) : 607 - 619
  • [2] Diagnosing first- and second-order phase transitions with probes of quantum chaos
    Huh, Kyoung-Bum
    Ikeda, Kazuki
    Jahnke, Viktor
    Kim, Keun-Young
    PHYSICAL REVIEW E, 2021, 104 (02)
  • [3] A mechanical analog of first- and second-order phase transitions
    Fletcher, G
    AMERICAN JOURNAL OF PHYSICS, 1997, 65 (01) : 74 - 81
  • [4] Coexisting first- and second-order electronic phase transitions in a correlated oxide
    Post, K. W.
    McLeod, A. S.
    Hepting, M.
    Bluschke, M.
    Wang, Yifan
    Cristiani, G.
    Logvenov, G.
    Charnukha, A.
    Ni, G. X.
    Radhakrishnan, Padma
    Minola, M.
    Pasupathy, A.
    Boris, A., V
    Benckiser, E.
    Dahmen, K. A.
    Carlson, E. W.
    Keimer, B.
    Basov, D. N.
    NATURE PHYSICS, 2018, 14 (10) : 1056 - +
  • [5] Identification of first- and second-order magnetic phase transitions in ferromagnetic perovskites
    Mira, J
    Rivas, J
    Rivadulla, F
    Quintela, MAL
    PHYSICA B-CONDENSED MATTER, 2002, 320 (1-4) : 23 - 25
  • [6] First- and second-order phase transitions in the Holstein-Hubbard model
    Koller, W
    Meyer, D
    Ono, Y
    Hewson, AC
    EUROPHYSICS LETTERS, 2004, 66 (04): : 559 - 564
  • [7] Coexisting first- and second-order electronic phase transitions in a correlated oxide
    K. W. Post
    A. S. McLeod
    M. Hepting
    M. Bluschke
    Yifan Wang
    G. Cristiani
    G. Logvenov
    A. Charnukha
    G. X. Ni
    Padma Radhakrishnan
    M. Minola
    A. Pasupathy
    A. V. Boris
    E. Benckiser
    K. A. Dahmen
    E. W. Carlson
    B. Keimer
    D. N. Basov
    Nature Physics, 2018, 14 : 1056 - 1061
  • [8] Photoacoustic investigation of first- and second-order phase transitions in molecular crystals
    Bonno, B.
    Laporte, J.L.
    Rousset, Y.
    1982, (75):
  • [9] First- and second-order phase transitions in the adlayer of biadipate on Au(111)
    Doneux, Th.
    Nichols, R. J.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (04) : 688 - 693
  • [10] Analytical study of factorial moments for first- and second-order phase transitions
    Cai, X
    Yang, CB
    Zhou, ZM
    PHYSICAL REVIEW C, 1996, 54 (05): : 2775 - 2778