Exceptional points near first- and second-order quantum phase transitions

被引:13
|
作者
Stransky, Pavel [1 ]
Dvorak, Martin [1 ]
Cejnar, Pavel [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, V Holesovickach 2, CR-18000 Prague, Czech Republic
关键词
SYSTEMS; MODEL; CLASSIFICATION; BEHAVIOR; SPECTRA; STATES;
D O I
10.1103/PhysRevE.97.012112
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the impact of quantum phase transitions (QPTs) on the distribution of exceptional points (EPs) of the Hamiltonian in the complex-extended parameter domain. Analyzing first-and second-order QPTs in the Lipkin-Meshkov-Glick model we find an exponentially and polynomially close approach of EPs to the respective critical point with increasing size of the system. If the critical Hamiltonian is subject to random perturbations of various kinds, the averaged distribution of EPs close to the critical point still carries decisive information on the QPT type. We therefore claim that properties of the EP distribution represent a parametrization-independent signature of criticality in quantum systems.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] First- and second-order perturbations of hypersurfaces
    Mars, M
    CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (16) : 3325 - 3347
  • [42] First- and second-order quantum phase transitions in the one-dimensional transverse-field Ising model with boundary fields
    Hu, Kun
    Wu, Xintian
    PHYSICAL REVIEW B, 2021, 103 (02)
  • [43] First- and second-order Poisson spots
    Kelly, William R.
    Shirley, Eric L.
    Migdall, Alan L.
    Polyakov, Sergey V.
    Hendrix, Kurt
    AMERICAN JOURNAL OF PHYSICS, 2009, 77 (08) : 713 - 720
  • [44] First- and second-order adjustments to globalization
    Soesastro, Hadi
    CHALLENGES TO THE GLOBAL TRADING SYSTEM, 2007, : 220 - 221
  • [45] About one unified description of the first- and second-order phase transitions in the phase-field crystal model
    Ankudinov, Vladimir
    Starodumov, Ilya
    Galenko, Peter K.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (16) : 12129 - 12138
  • [46] Quantum chemical calculations of the first- and second-order hyperpolarizabilities of molecules in solutions
    Bartkowiak, W
    Zalesny, R
    Niewodniczanski, W
    Leszczynski, J
    JOURNAL OF PHYSICAL CHEMISTRY A, 2001, 105 (47): : 10702 - 10710
  • [47] Finite-size scaling at first- and second-order phase transitions of Baxter-Wu model
    Martinos, SS
    Malakis, A
    Hadjiagapiou, I
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 355 (2-4) : 393 - 407
  • [48] Finite-size scaling of the density of zeros of the partition function in first- and second-order phase transitions
    Creswick, Richard J.
    Kim, Seung-Yeon
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1997, 56 (3-A pt A):
  • [49] Finite-size scaling of the density of zeros of the partition function in first- and second-order phase transitions
    Creswick, RJ
    Kim, SY
    PHYSICAL REVIEW E, 1997, 56 (03): : 2418 - 2422
  • [50] First- and second-order phase transitions in Fe-(17-19)at.%Ga alloys
    Mohamed, A. K.
    Cheverikin, V. V.
    Medvedeva, S. V.
    Bobrikov, I. A.
    Balagurov, A. M.
    Golovin, I. S.
    MATERIALS LETTERS, 2020, 279