Simulation of nanocolumn formation in a plasma environment

被引:6
|
作者
Abraham, J. W. [1 ]
Kongsuwan, N. [1 ,2 ]
Strunskus, T. [3 ]
Faupel, F. [3 ]
Bonitz, M. [1 ]
机构
[1] Univ Kiel, Inst Theoret Phys & Astrophys, D-24098 Kiel, Germany
[2] Univ Cambridge, Cavendish Lab, Dept Phys, Cambridge CB3 0HE, England
[3] Univ Kiel, Lehrstuhl Mat Verbunde, Inst Mat Wissensch, D-24143 Kiel, Germany
关键词
NANOCOMPOSITES; DEPOSITION; DIFFUSION; GROWTH;
D O I
10.1063/1.4905255
中图分类号
O59 [应用物理学];
学科分类号
摘要
Recent experiments and kinetic Monte Carlo (KMC) simulations [H. Greve et al., Appl. Phys. Lett. 88, 123103 (2006), L. Rosenthal et al., J. Appl. Phys. 114, 044305 (2013)] demonstrated that physical vapor co-deposition of a metal alloy (Fe-Ni-Co) and a polymer (Teflon AF) is a suitable method to grow magnetic nanocolumns in a self-organized one-step process. While only thermal sources have been used so far, in this work, we analyze the feasibility of this process for the case of a sputtering source. For that purpose, we extend our previous simulation model by including a process that takes into account the influence of ions impinging on the substrate. The simulation results predict that metal nanocolumn formation should be possible. Furthermore, we show that the effect of ions that create trapping sites for the metal particles is to increase the number of nanocolumns. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] SIMULATION OF THE INFLUENCE OF THE INVESTMENT ENVIRONMENT ON THE FORMATION OF AN ATTRACTIVE MACRO SPACE OF THE ECONOMY OF UKRAINE
    Baula, Olena
    Liutak, Olena
    Galaziuk, Nataliya
    Zelinska, Olha
    FINANCIAL AND CREDIT ACTIVITY-PROBLEMS OF THEORY AND PRACTICE, 2024, 5 (58): : 303 - 313
  • [42] Formation of fluorine for abating sulfur hexafluoride in an atmospheric-pressure plasma environment
    Tsai, Cheng-Hsien
    Shao, Jen-Min
    JOURNAL OF HAZARDOUS MATERIALS, 2008, 157 (01) : 201 - 206
  • [43] Vertical nanocolumn-assisted pluripotent stem cell colony formation with minimal cell-penetration
    Kim, Hyunju
    Kang, Dong Hee
    Koo, Kyung Hee
    Lee, Seyeong
    Kim, Seong-Min
    Kim, Janghwan
    Yoon, Myung-Han
    Kim, So Yeon
    Yang, Eun Gyeong
    NANOSCALE, 2016, 8 (42) : 18087 - 18097
  • [44] Design and construction of the near-earth space plasma simulation system of the Space Plasma Environment Research Facility
    Ling, W.
    Jing, C.
    Wan, J.
    Mao, A.
    Xiao, Q.
    Guan, J.
    Cheng, J.
    Liu, C.
    JOURNAL OF PLASMA PHYSICS, 2024, 90 (01)
  • [45] Plasma for environment
    Van Oost, G.
    INTERNATIONAL CONFERENCE PROBLEMS OF THERMAL PHYSICS AND POWER ENGINEERING (PTPPE-2017), 2017, 891
  • [46] Plasma for environment
    Van Oost, G.
    III INTERNATIONAL CONFERENCE ON LASER AND PLASMA RESEARCHES AND TECHNOLOGIES, 2018, 941
  • [47] Numerical simulation of 3D plasma MHD aero-thermal environment
    Ding M.
    Jiang T.
    Dong W.
    Gao T.
    Liu Q.
    Ding, Mingsong (dingms2008@qq.com), 1600, Chinese Society of Astronautics (38):
  • [48] Numerical simulation of zirconia splat formation and cooling during plasma spray deposition
    Liao, YeMeng
    Zheng, YunZhai
    Zheng, ZhengHuan
    Li, Qiang
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2016, 122 (07):
  • [49] Three-Dimensional Numerical Simulation of Splat Formation on Substrates in Plasma Spraying
    崔长文
    李强
    Journal of Shanghai Jiaotong University(Science), 2011, 16 (03) : 347 - 351
  • [50] Numerical simulation of coating growth and pore formation in rapid plasma spray tooling
    Chen, YX
    Wang, GL
    Zhang, HO
    THIN SOLID FILMS, 2001, 390 (1-2) : 13 - 19