Simulation of nanocolumn formation in a plasma environment

被引:6
|
作者
Abraham, J. W. [1 ]
Kongsuwan, N. [1 ,2 ]
Strunskus, T. [3 ]
Faupel, F. [3 ]
Bonitz, M. [1 ]
机构
[1] Univ Kiel, Inst Theoret Phys & Astrophys, D-24098 Kiel, Germany
[2] Univ Cambridge, Cavendish Lab, Dept Phys, Cambridge CB3 0HE, England
[3] Univ Kiel, Lehrstuhl Mat Verbunde, Inst Mat Wissensch, D-24143 Kiel, Germany
关键词
NANOCOMPOSITES; DEPOSITION; DIFFUSION; GROWTH;
D O I
10.1063/1.4905255
中图分类号
O59 [应用物理学];
学科分类号
摘要
Recent experiments and kinetic Monte Carlo (KMC) simulations [H. Greve et al., Appl. Phys. Lett. 88, 123103 (2006), L. Rosenthal et al., J. Appl. Phys. 114, 044305 (2013)] demonstrated that physical vapor co-deposition of a metal alloy (Fe-Ni-Co) and a polymer (Teflon AF) is a suitable method to grow magnetic nanocolumns in a self-organized one-step process. While only thermal sources have been used so far, in this work, we analyze the feasibility of this process for the case of a sputtering source. For that purpose, we extend our previous simulation model by including a process that takes into account the influence of ions impinging on the substrate. The simulation results predict that metal nanocolumn formation should be possible. Furthermore, we show that the effect of ions that create trapping sites for the metal particles is to increase the number of nanocolumns. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Plasma environment of Titan:: a 3-D hybrid simulation study
    Simon, S.
    Boesswetter, A.
    Bagdonat, T.
    Motschmann, U.
    Glassmeier, K. -H.
    ANNALES GEOPHYSICAE, 2006, 24 (03) : 1113 - 1135
  • [22] Plasma environment in the wake of Titan from hybrid simulation: A case study
    Modolo, R.
    Chanteur, M.
    Wahlund, J.-E.
    Canu, P.
    Kurth, W. S.
    Gurnett, D.
    Matthews, A. P.
    Bertucci, C.
    GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (24)
  • [23] Spacecraft plasma environment and contamination simulation code: Description and first tests
    Roussel, JF
    JOURNAL OF SPACECRAFT AND ROCKETS, 1998, 35 (02) : 205 - 211
  • [24] ORION: A Simulation Environment for Spacecraft Formation Flight, Capture, and Orbital Robotics
    Wilde, Markus
    Kaplinger, Brian
    Go, Tiauw
    Gutierrez, Hector
    Kirk, Daniel
    2016 IEEE AEROSPACE CONFERENCE, 2016,
  • [25] Laser-assisted plasma formation and ablation of Cu in a controlled environment
    Bashir, Shazia
    Dawood, Asadullah
    Hayat, Asma
    Askar, Sameh
    Ahmad, Zubair
    Ahmad, Hijaz
    Khan, Muhammad Asad
    HELIYON, 2023, 9 (08)
  • [26] Mechanical stress control in GaN films on sapphire substrate via patterned nanocolumn interlayer formation
    Artemiev, Dmitry
    Bougrov, Vladislav
    Odnoblyudov, Maxim
    Romanov, Alexey
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 10, NO 1, 2013, 10 (01): : 89 - 92
  • [27] Spacecraft plasma environment analysis via large scale 3D plasma particle simulation
    Okada, Masaki
    Usui, Hideyuki
    Omura, Yoshiharu
    Ueda, Hiroko O.
    Murata, Takeshi
    Sugiyama, Tooru
    HIGH-PERFORMANCE COMPUTING, 2008, 4759 : 383 - +
  • [28] Numerical simulation of reaction-diffusion process of air plasma with a plasma source in open atmospheric environment
    Yin Zeng-Qian
    Zhao Pan-Pan
    Dong Li-Fang
    Fang Tong-Zhen
    ACTA PHYSICA SINICA, 2011, 60 (02)
  • [29] Particle-In-Cell Simulation on the Characteristics of a Receiving Antenna in Space Plasma Environment
    Miyake, Yohei
    Usui, Hideyuki
    Kojima, Hirotsugu
    Omura, Yoshiharu
    RAREFIED GAS DYNAMICS, 2009, 1084 : 895 - 900
  • [30] Fluid-solid coupled simulation of hypervelocity impact and plasma formation
    Islam, Shafquat T.
    Ma, Wentao
    Michopoulos, John G.
    Wang, Kevin
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2023, 180