Simulation of nanocolumn formation in a plasma environment

被引:6
|
作者
Abraham, J. W. [1 ]
Kongsuwan, N. [1 ,2 ]
Strunskus, T. [3 ]
Faupel, F. [3 ]
Bonitz, M. [1 ]
机构
[1] Univ Kiel, Inst Theoret Phys & Astrophys, D-24098 Kiel, Germany
[2] Univ Cambridge, Cavendish Lab, Dept Phys, Cambridge CB3 0HE, England
[3] Univ Kiel, Lehrstuhl Mat Verbunde, Inst Mat Wissensch, D-24143 Kiel, Germany
关键词
NANOCOMPOSITES; DEPOSITION; DIFFUSION; GROWTH;
D O I
10.1063/1.4905255
中图分类号
O59 [应用物理学];
学科分类号
摘要
Recent experiments and kinetic Monte Carlo (KMC) simulations [H. Greve et al., Appl. Phys. Lett. 88, 123103 (2006), L. Rosenthal et al., J. Appl. Phys. 114, 044305 (2013)] demonstrated that physical vapor co-deposition of a metal alloy (Fe-Ni-Co) and a polymer (Teflon AF) is a suitable method to grow magnetic nanocolumns in a self-organized one-step process. While only thermal sources have been used so far, in this work, we analyze the feasibility of this process for the case of a sputtering source. For that purpose, we extend our previous simulation model by including a process that takes into account the influence of ions impinging on the substrate. The simulation results predict that metal nanocolumn formation should be possible. Furthermore, we show that the effect of ions that create trapping sites for the metal particles is to increase the number of nanocolumns. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] SIMULATION OF NANOCOLUMN FORMATION IN A PLASMA ENVIRONMENT
    Abraham, Jan Willem
    Strunskus, Thomas
    Faupel, Franz
    Bonitz, Michael
    2015 42ND IEEE INTERNATIONAL CONFERENCE ON PLASMA SCIENCES (ICOPS), 2015,
  • [2] ANALYTICAL SIMULATION OF THE GEOSYNCHRONOUS PLASMA ENVIRONMENT
    GARRETT, HB
    DEFOREST, SE
    PLANETARY AND SPACE SCIENCE, 1979, 27 (08) : 1101 - 1109
  • [3] Formation of nanocolumn self-assembly by solvent polarity control
    Chai, Xiangdong
    Yang, Wensheng
    Cao, Yunwei
    Jiang, Yueshun
    Lu, Ran
    Li, Tiejin
    He, Huixin
    Wang, Yongqiang
    Liu, Zhongfan
    Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, 1997, 15 (04):
  • [4] Formation of nanocolumn self-assembly by solvent polarity control
    Chai, XD
    Yang, WS
    Cao, YW
    Jiang, YS
    Lu, R
    Li, TJ
    He, HX
    Wang, YQ
    Liu, ZF
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1997, 15 (04): : 1425 - 1428
  • [5] Simulation on plasma doping for shallow junction formation
    Yu, Min
    Ji, Huihui
    Li, Ming
    Huang, Ru
    Zhang, Xing
    EXTENDED ABSTRACTS 2008 INTERNATIONAL WORKSHOP ON JUNCTION TECHNOLOGY, 2008, : 14 - 19
  • [6] DIII-D plasma control simulation environment
    Leuer, JA
    Deranian, RD
    Ferron, JR
    Humphreys, DA
    Johnson, RD
    Penaflor, BG
    Walker, ML
    Welander, AS
    Khayrutdinov, RR
    Dokouka, V
    Edgell, DH
    Fransson, CM
    20TH IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING, PROCEEDINGS, 2003, : 397 - 400
  • [7] Formation of Plasma Around a Small Meteoroid: Electrostatic Simulation
    Sugar, G.
    Oppenheim, M. M.
    Dimant, Y. S.
    Close, S.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2019, 124 (05) : 3810 - 3826
  • [8] Simulation of fullerene formation in a carbon-helium plasma
    Novikov, Pavel V.
    Osipova, Irina V.
    Churilov, Grigory N.
    Dudnik, Alexander I.
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2021, 29 (05) : 337 - 342
  • [9] Formation of Plasma Around a Small Meteoroid: Simulation and Theory
    Sugar, G.
    Oppenheim, M. M.
    Dimant, Y. S.
    Close, S.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (05) : 4080 - 4093
  • [10] Spontaneous formation of nonspherical water ice grains in a plasma environment
    Chai, Kil-Byoung
    Bellan, Paul M.
    GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (23) : 6258 - 6263