Minimal dynamical triangulations of random surfaces

被引:10
|
作者
Bowick, MJ
Catterall, SM
Thorleifsson, G
机构
[1] Department of Physics, Syracuse University, Syracuse
关键词
D O I
10.1016/S0370-2693(96)01459-1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We introduce and investigate numerically a minimal class of dynamical triangulations of two-dimensional gravity on the sphere in which only vertices of order five, six or seven are permitted. We show firstly that this restriction of the local coordination number, or equivalently intrinsic scalar curvature, leaves intact the fractal structure characteristic of generic dynamically triangulated random surfaces. Furthermore the Ising model coupled to minimal two-dimensional gravity still possesses a continuous phase transition. The critical exponents of this transition correspond to the usual KPZ exponents associated with coupling a central charge c = 1/2 model to two-dimensional gravity.
引用
收藏
页码:305 / 309
页数:5
相关论文
共 50 条
  • [41] Properties of Random Triangulations and Trees
    L. Devroye
    P. Flajolet
    F. Hurtado
    M. Noy
    W. Steiger
    Discrete & Computational Geometry, 1999, 22 : 105 - 117
  • [42] Counting colored random triangulations
    Bouttier, J
    Di Francesco, P
    Guitter, E
    NUCLEAR PHYSICS B, 2002, 641 (03) : 519 - 532
  • [43] Random veering triangulations are not geometric
    Futer, David
    Taylor, Samuel
    Worden, William
    GROUPS GEOMETRY AND DYNAMICS, 2020, 14 (03) : 1077 - 1126
  • [44] On properties of random dissections and triangulations
    Nicla Bernasconi
    Konstantinos Panagiotou
    Angelika Steger
    Combinatorica, 2010, 30 : 627 - 654
  • [45] RECENT RESULTS IN EUCLIDEAN DYNAMICAL TRIANGULATIONS
    Laiho, J.
    Bassler, S.
    Du, D.
    Neelakanta, J. T.
    Coumbe, D.
    3RD CONFERENCE OF THE POLISH SOCIETY ON RELATIVITY, 2016, 2017, 10 (02): : 317 - 320
  • [46] The semiclassical limit of causal dynamical triangulations
    Ambjorn, J.
    Gorlich, A.
    Jurkiewicz, J.
    Loll, R.
    Gizbert-Studnicki, J.
    Trzesniewski, T.
    NUCLEAR PHYSICS B, 2011, 849 (01) : 144 - 165
  • [47] Quantum gravity represented as dynamical triangulations
    Ambjorn, J.
    Burda, Z.
    Jurkiewicz, J.
    Kristjansen, C.F.
    Acta Physica Polonica, Series B: Particle Physics and Field Theory, Nuclear Physics Theory of Relativity, 1992, 23 (10):
  • [48] Reconstructing noisy dynamical systems by triangulations
    Allie, S
    Mees, A
    Judd, K
    Watson, D
    PHYSICAL REVIEW E, 1997, 55 (01): : 87 - 93
  • [49] Suppressing curvature fluctuations in dynamical triangulations
    Bowick, MJ
    Catterall, SM
    Thorleifsson, G
    NUCLEAR PHYSICS B, 1997, : 753 - 755
  • [50] Making the Case for Causal Dynamical Triangulations
    Cooperman, Joshua H.
    FOUNDATIONS OF PHYSICS, 2020, 50 (11) : 1739 - 1755