Minimal dynamical triangulations of random surfaces

被引:10
|
作者
Bowick, MJ
Catterall, SM
Thorleifsson, G
机构
[1] Department of Physics, Syracuse University, Syracuse
关键词
D O I
10.1016/S0370-2693(96)01459-1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We introduce and investigate numerically a minimal class of dynamical triangulations of two-dimensional gravity on the sphere in which only vertices of order five, six or seven are permitted. We show firstly that this restriction of the local coordination number, or equivalently intrinsic scalar curvature, leaves intact the fractal structure characteristic of generic dynamically triangulated random surfaces. Furthermore the Ising model coupled to minimal two-dimensional gravity still possesses a continuous phase transition. The critical exponents of this transition correspond to the usual KPZ exponents associated with coupling a central charge c = 1/2 model to two-dimensional gravity.
引用
收藏
页码:305 / 309
页数:5
相关论文
共 50 条
  • [31] Critical phenomena in causal dynamical triangulations
    Ambjorn, J.
    Coumbe, D.
    Gizbert-Studnicki, J.
    Gorlich, A.
    Jurkiewicz, J.
    CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (22)
  • [32] Running scales in causal dynamical triangulations
    Clemente, Giuseppe
    D'Elia, Massimo
    Ferraro, Alessandro
    PHYSICAL REVIEW D, 2019, 99 (11):
  • [33] Scalar fields in causal dynamical triangulations
    Ambjorn, Jan
    Drogosz, Zbigniew
    Gizbert-Studnicki, Jakub
    Gorlich, Andrzej
    Jurkiewicz, Jerzy
    Nemeth, Daniel
    CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (19)
  • [34] ON PROPERTIES OF RANDOM DISSECTIONS AND TRIANGULATIONS
    Bernasconi, Nicla
    Panagiotou, Konstantinos
    Steger, Angelika
    COMBINATORICA, 2010, 30 (06) : 627 - 654
  • [35] Exceptional Balanced Triangulations on Surfaces
    Steven Klee
    Satoshi Murai
    Yusuke Suzuki
    Graphs and Combinatorics, 2019, 35 : 1361 - 1373
  • [36] Semi-classical dynamical triangulations
    Ambjorn, J.
    Budd, T. G.
    PHYSICS LETTERS B, 2012, 718 (01) : 200 - 204
  • [37] CAUSAL DYNAMICAL TRIANGULATIONS WITH TOROIDAL TOPOLOGY*
    Gorlich, Andrzej
    3RD CONFERENCE OF THE POLISH SOCIETY ON RELATIVITY, 2016, 2017, 10 (02): : 311 - 315
  • [38] Voronoi diagrams, triangulations and surfaces
    Boissonnat, JD
    Differential Geometry and Topology, Discrete and Computational Geometry, 2005, 197 : 340 - 368
  • [39] TRANSFORMING TRIANGULATIONS ON NONPLANAR SURFACES
    Cortes, C.
    Grima, C. I.
    Hurtado, F.
    Marquez, A.
    Santos, F.
    Valenzuela, J.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (03) : 821 - 840
  • [40] Nonrealizable Minimal Vertex Triangulations of Surfaces: Showing Nonrealizability Using Oriented Matroids and Satisfiability Solvers
    Schewe, Lars
    DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 43 (02) : 289 - 302