Minimal dynamical triangulations of random surfaces

被引:10
|
作者
Bowick, MJ
Catterall, SM
Thorleifsson, G
机构
[1] Department of Physics, Syracuse University, Syracuse
关键词
D O I
10.1016/S0370-2693(96)01459-1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We introduce and investigate numerically a minimal class of dynamical triangulations of two-dimensional gravity on the sphere in which only vertices of order five, six or seven are permitted. We show firstly that this restriction of the local coordination number, or equivalently intrinsic scalar curvature, leaves intact the fractal structure characteristic of generic dynamically triangulated random surfaces. Furthermore the Ising model coupled to minimal two-dimensional gravity still possesses a continuous phase transition. The critical exponents of this transition correspond to the usual KPZ exponents associated with coupling a central charge c = 1/2 model to two-dimensional gravity.
引用
收藏
页码:305 / 309
页数:5
相关论文
共 50 条
  • [1] Minimal dynamical triangulations of random surfaces
    Phys Lett Sect B Nucl Elem Part High Energy Phys, 3-4 (305):
  • [2] MINIMAL ORDERED TRIANGULATIONS OF SURFACES
    MAGAJNA, Z
    MOHAR, B
    PISANSKI, T
    JOURNAL OF GRAPH THEORY, 1986, 10 (04) : 451 - 460
  • [3] MINIMAL TRIANGULATIONS ON ORIENTABLE SURFACES
    JUNGERMAN, M
    RINGEL, G
    ACTA MATHEMATICA, 1980, 145 (1-2) : 121 - 154
  • [4] Minimal Delaunay Triangulations of Hyperbolic Surfaces
    Matthijs Ebbens
    Hugo Parlier
    Gert Vegter
    Discrete & Computational Geometry, 2023, 69 : 568 - 592
  • [5] Minimal Delaunay Triangulations of Hyperbolic Surfaces
    Ebbens, Matthijs
    Parlier, Hugo
    Vegter, Gert
    DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 69 (02) : 568 - 592
  • [6] The covering type of closed surfaces and minimal triangulations
    Borghini, Eugenio
    Gabriel Minian, Elias
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 166 : 1 - 10
  • [7] Minimal energy surfaces on Powell-Sabin type triangulations
    Barrera, D.
    Fortes, M. A.
    Gonzalez, P.
    Pasadas, M.
    APPLIED NUMERICAL MATHEMATICS, 2008, 58 (05) : 635 - 645
  • [8] ON TRIANGULATIONS OF SURFACES
    HATCHER, A
    TOPOLOGY AND ITS APPLICATIONS, 1991, 40 (02) : 189 - 194
  • [9] Minimal attractors and bifurcations of random dynamical systems
    Ashwin, P
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1987): : 2615 - 2634
  • [10] On a property of minimal triangulations
    Kratsch, Dieter
    Mueller, Haiko
    DISCRETE MATHEMATICS, 2009, 309 (06) : 1724 - 1729