BESSEL MULTIPLIERS IN HILBERT C*-MODULES

被引:17
|
作者
Khosravi, Amir [1 ]
Azandaryani, Morteza Mirzaee [2 ]
机构
[1] Kharazmi Univ, Fac Math Sci & Comp, Tehran 15618, Iran
[2] Univ Qom, Dept Math, Fac Sci, Qom, Iran
来源
关键词
Hilbert C*-module; Bessel sequence; Bessel multiplier; modular Riesz basis; FUSION FRAMES; RIESZ BASES;
D O I
10.15352/bjma/09-3-11
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce Bessel multipliers, g-Bessel multipliers and Bessel fusion multipliers in Hilbert C*-modules and we show that they share many useful properties with their corresponding notions in Hilbert and Banach spaces. We show that various properties of multipliers are closely related to their symbols and Bessel sequences, especially we consider multipliers when their Bessel sequences are modular Riesz bases and we see that in this case multipliers can be composed and inverted. We also study bounded below multipliers and generalize some of the results obtained for fusion frames in Hilbert spaces to Hilbert C*-modules.
引用
收藏
页码:153 / 163
页数:11
相关论文
共 50 条
  • [41] ON ORTHOGONAL SYSTEMS IN HILBERT C*-MODULES
    Landi, Giovanni
    Pavlov, Alexander
    JOURNAL OF OPERATOR THEORY, 2012, 68 (02) : 487 - 500
  • [42] Pullback diagram of Hilbert C*-modules
    Amyari, Maryam
    Chakoshi, Mahnaz
    MATHEMATICAL COMMUNICATIONS, 2011, 16 (02) : 569 - 575
  • [43] On∗-fusion frames for Hilbert C∗-modules
    Assila, Nadia
    Kabbaj, Samir
    Zoubeir, Hicham
    ADVANCES IN OPERATOR THEORY, 2024, 9 (02)
  • [44] Geometrical aspects of Hilbert C*-modules
    Frank, M
    POSITIVITY, 1999, 3 (03) : 215 - 243
  • [45] NUMERICAL RADIUS IN HILBERT C*-MODULES
    Zamani, Ali
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (04): : 1017 - 1030
  • [46] MORITA EQUIVALENCE OF HILBERT C*- MODULES
    Amini, Massoud
    Asadi, Mohammad B.
    Joita, Maria
    Rezavand, Reza
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (01): : 102 - 110
  • [47] On equivariant embedding of Hilbert C* modules
    Debashish Goswami
    Proceedings - Mathematical Sciences, 2009, 119 : 63 - 70
  • [48] Hilbert C*-modules over Σ*-aIgebras
    Bearden, Clifford A.
    STUDIA MATHEMATICA, 2016, 235 (03) : 269 - 304
  • [49] Pair frames in Hilbert C*-modules
    Azandaryani, M. Mirzaee
    Fereydooni, A.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (02):
  • [50] On extendability of functionals on Hilbert C*-modules
    Manuilov, Vladimir
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (03) : 998 - 1005