BESSEL MULTIPLIERS IN HILBERT C*-MODULES

被引:17
|
作者
Khosravi, Amir [1 ]
Azandaryani, Morteza Mirzaee [2 ]
机构
[1] Kharazmi Univ, Fac Math Sci & Comp, Tehran 15618, Iran
[2] Univ Qom, Dept Math, Fac Sci, Qom, Iran
来源
关键词
Hilbert C*-module; Bessel sequence; Bessel multiplier; modular Riesz basis; FUSION FRAMES; RIESZ BASES;
D O I
10.15352/bjma/09-3-11
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce Bessel multipliers, g-Bessel multipliers and Bessel fusion multipliers in Hilbert C*-modules and we show that they share many useful properties with their corresponding notions in Hilbert and Banach spaces. We show that various properties of multipliers are closely related to their symbols and Bessel sequences, especially we consider multipliers when their Bessel sequences are modular Riesz bases and we see that in this case multipliers can be composed and inverted. We also study bounded below multipliers and generalize some of the results obtained for fusion frames in Hilbert spaces to Hilbert C*-modules.
引用
收藏
页码:153 / 163
页数:11
相关论文
共 50 条
  • [31] MULTIPLIERS FOR OPERATOR-VALUED BESSEL SEQUENCES AND GENERALIZED HILBERT-SCHMIDT CLASSES
    Krishna, K. Mahesh
    Johnson, P. Sam
    Mohapatra, R. N.
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2022, 40 (1-2): : 153 - 171
  • [32] A characterization of Hilbert C*-modules as Banach modules with involution
    Asadi, M. B.
    Frank, M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (02) : 722 - 725
  • [33] Frames in Hilbert C*-modules and C*-algebras
    Frank, M
    Larson, DR
    JOURNAL OF OPERATOR THEORY, 2002, 48 (02) : 273 - 314
  • [34] SYMMETRIC BESSEL MULTIPLIERS
    Houissa, Khadija
    Sifi, Mohamed
    COLLOQUIUM MATHEMATICUM, 2012, 126 (02) : 155 - 176
  • [35] Bessel fusion multipliers
    Laura Arias, M.
    Pacheco, Miriam
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 348 (02) : 581 - 588
  • [36] Approximate isometries in Hilbert C*-modules
    Mirmostafaee, Alireza Kamel
    MATHEMATICAL COMMUNICATIONS, 2009, 14 (01) : 167 - 176
  • [37] On large submodules in Hilbert C*-modules
    Manuilov, V.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 542 (02)
  • [38] Isometries of real Hilbert C*-modules
    Hsu, Ming-Hsiu
    Wong, Ngai-Ching
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 438 (02) : 807 - 827
  • [39] On equivariant embedding of Hilbert C* modules
    Goswami, Debashish
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2009, 119 (01): : 63 - 70
  • [40] A SURVEY ON EXTENSIONS OF HILBERT C*-MODULES
    Kolarec, Biserka
    QUANTUM PROBABILITY AND RELATED TOPICS, 2013, 29 : 209 - 221