Volume estimation in a Eucalyptus plantation using multi-source remote sensing and digital terrain data: a case study in Minas Gerais State, Brazil

被引:33
|
作者
Dos Reis, Aliny Aparecida [1 ,2 ]
Franklin, Steven E. [2 ]
de Mello, Jose Marcio [1 ]
Acerbi Junior, Fausto Weimar [1 ]
机构
[1] Univ Lavras UFLA, Dept Forest Sci, POB 3037, BR-37200000 Lavras, Brazil
[2] Trent Univ, Sch Environm, Peterborough, ON, Canada
关键词
PRINCIPAL COMPONENT ANALYSIS; ABOVEGROUND BIOMASS; IMAGE TEXTURE; STRUCTURAL ATTRIBUTES; ICESAT/GLAS DATA; FOREST BIOMASS; SPECTRAL DATA; STAND-VOLUME; SOUTH-AFRICA; INVENTORY;
D O I
10.1080/01431161.2018.1530808
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this study, we tested the effectiveness of stand age, multispectral optical imagery obtained from the Landsat 8 Operational Land Imager (OLI), synthetic aperture radar (SAR) data acquired by the Sentinel-1B satellite, and digital terrain attributes extracted from a digital elevation model (DEM), in estimating forest volume in 351 plots in a 1,498 ha Eucalyptus plantation in northern Minas Gerais state, Brazil. A Random Forest (RF) machine learning algorithm was used following the Principal Component Analysis (PCA) of various data combinations, including multispectr al and SAR texture variables and DEM-based geomorphometric derivatives. Using multispectral, SAR or DEM variables alone (i.e. Experiments (ii)-(iv)) did not provide accurate estimates of volume (RMSE (Root Mean Square Error) > 32.00 m(3) ha(-1)) compared to predictions based on age since planting of Eucalyptus stands (Experiment (i)). However, when these datasets were individually combined with stand age (i.e. Experiments (v)-(vii)), the RF models resulted in better volume estimates than those obtained when using the individual multispectral, SAR and DEM datasets (RMSE < 28.00 m(3) ha(-1)). Furthermore, a model that integrated the selected variables of these data with stand age (Experiment (viii)) improved volume estimation significantly (RMSE = 22.33 m(3) ha(-1)). The large and increasing area of Eucalyptus forest plantations in Brazil and elsewhere suggests that this new approach to volume estimation has the potential to support Eucalyptus plantation monitoring and forest management practices.
引用
收藏
页码:2683 / 2702
页数:20
相关论文
共 50 条
  • [1] Remote Sensing and Geographic Information Systems for the Study of Schistosomiasis in the State of Minas Gerais, Brazil
    Freitas, Corina C.
    Guimaraes, Ricardo J. P. S.
    Dutra, Luciano V.
    Martins, Flavia T.
    Gouvea, Erica J. C.
    Santos, Ricardo A. T.
    Moura, Ana C. M.
    Drummond, Sandra C.
    Amaral, Ronaldo S.
    Carvalho, Omar S.
    2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 2436 - +
  • [2] Forest Fire Mapping Using Multi-Source Remote Sensing Data: A Case Study in Chongqing
    Zhao, Yixin
    Huang, Yajun
    Sun, Xupeng
    Dong, Guanyu
    Li, Yuanqing
    Ma, Mingguo
    REMOTE SENSING, 2023, 15 (09)
  • [3] Schistosomiasis risk mapping in the state of Minas Gerais, Brazil, using a decision tree approach, remote sensing data and sociological indicators
    Martins-Bede, Flavia T.
    Dutra, Luciano V.
    Freitas, Corina C.
    Guimardes, Ricardo J. P. S.
    Amaral, Ronaldo S.
    Drummond, Sandra C.
    Carvalho, Omar S.
    MEMORIAS DO INSTITUTO OSWALDO CRUZ, 2010, 105 (04): : 541 - 548
  • [4] Study on the Estimation of Forest Volume Based on Multi-Source Data
    Hu, Tao
    Sun, Yuman
    Jia, Weiwei
    Li, Dandan
    Zou, Maosheng
    Zhang, Mengku
    SENSORS, 2021, 21 (23)
  • [5] Schistosomiasis risk estimation in Minas Gerais State, Brazil, using environmental data and GIS techniques
    Guimaraes, Ricardo J. P. S.
    Freitas, Corina C.
    Dutra, Luciano V.
    Moura, Ana C. M.
    Amaral, Ronaldo S.
    Drummond, Sandra C.
    Scholte, Ronaldo G. C.
    Carvalho, Omar S.
    ACTA TROPICA, 2008, 108 (2-3) : 234 - 241
  • [6] A Study on Urban Thermal Field of Shanghai Using Multi-source Remote Sensing Data
    Li, Cheng-Fan
    Yin, Jing-Yuan
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2013, 41 (04) : 1009 - 1019
  • [7] A Study on Urban Thermal Field of Shanghai Using Multi-source Remote Sensing Data
    Cheng-Fan Li
    Jing-Yuan Yin
    Journal of the Indian Society of Remote Sensing, 2013, 41 : 1009 - 1019
  • [8] IQPC 2015 TRACK: WATER DETECTION AND CLASSIFICATION ON MULTI-SOURCE REMOTE SENSING AND TERRAIN DATA
    Olasz, A.
    Kristof, D.
    Belenyesi, M.
    Bakos, K.
    Kovacs, Z.
    Balazs, B.
    Szabo, Sz.
    ISPRS GEOSPATIAL WEEK 2015, 2015, 40-3 (W3): : 583 - 588
  • [9] Flood Inundation Mapping and Estimation using VGI, Remote Sensing Images and Other Multi-source Data
    Xing Z.
    Dong X.
    Zan X.
    Yang S.
    Huang Z.
    Liu Z.
    Zhang X.
    Journal of Geo-Information Science, 2023, 25 (09) : 1869 - 1881
  • [10] High-Resolution Mapping of Maize in Mountainous Terrain Using Machine Learning and Multi-Source Remote Sensing Data
    Liu, Luying
    Yang, Jingyi
    Yin, Fang
    He, Linsen
    LAND, 2025, 14 (02)