Volume estimation in a Eucalyptus plantation using multi-source remote sensing and digital terrain data: a case study in Minas Gerais State, Brazil

被引:33
|
作者
Dos Reis, Aliny Aparecida [1 ,2 ]
Franklin, Steven E. [2 ]
de Mello, Jose Marcio [1 ]
Acerbi Junior, Fausto Weimar [1 ]
机构
[1] Univ Lavras UFLA, Dept Forest Sci, POB 3037, BR-37200000 Lavras, Brazil
[2] Trent Univ, Sch Environm, Peterborough, ON, Canada
关键词
PRINCIPAL COMPONENT ANALYSIS; ABOVEGROUND BIOMASS; IMAGE TEXTURE; STRUCTURAL ATTRIBUTES; ICESAT/GLAS DATA; FOREST BIOMASS; SPECTRAL DATA; STAND-VOLUME; SOUTH-AFRICA; INVENTORY;
D O I
10.1080/01431161.2018.1530808
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this study, we tested the effectiveness of stand age, multispectral optical imagery obtained from the Landsat 8 Operational Land Imager (OLI), synthetic aperture radar (SAR) data acquired by the Sentinel-1B satellite, and digital terrain attributes extracted from a digital elevation model (DEM), in estimating forest volume in 351 plots in a 1,498 ha Eucalyptus plantation in northern Minas Gerais state, Brazil. A Random Forest (RF) machine learning algorithm was used following the Principal Component Analysis (PCA) of various data combinations, including multispectr al and SAR texture variables and DEM-based geomorphometric derivatives. Using multispectral, SAR or DEM variables alone (i.e. Experiments (ii)-(iv)) did not provide accurate estimates of volume (RMSE (Root Mean Square Error) > 32.00 m(3) ha(-1)) compared to predictions based on age since planting of Eucalyptus stands (Experiment (i)). However, when these datasets were individually combined with stand age (i.e. Experiments (v)-(vii)), the RF models resulted in better volume estimates than those obtained when using the individual multispectral, SAR and DEM datasets (RMSE < 28.00 m(3) ha(-1)). Furthermore, a model that integrated the selected variables of these data with stand age (Experiment (viii)) improved volume estimation significantly (RMSE = 22.33 m(3) ha(-1)). The large and increasing area of Eucalyptus forest plantations in Brazil and elsewhere suggests that this new approach to volume estimation has the potential to support Eucalyptus plantation monitoring and forest management practices.
引用
收藏
页码:2683 / 2702
页数:20
相关论文
共 50 条
  • [21] Machine Learning Techniques for Fine Dead Fuel Load Estimation Using Multi-Source Remote Sensing Data
    D'Este, Marina
    Elia, Mario
    Giannico, Vincenzo
    Spano, Giuseppina
    Lafortezza, Raffaele
    Sanesi, Giovanni
    REMOTE SENSING, 2021, 13 (09)
  • [22] Global Soil Salinity Estimation at 10 m Using Multi-Source Remote Sensing
    Wang, Nan
    Chen, Songchao
    Huang, Jingyi
    Frappart, Frederic
    Taghizadeh, Ruhollah
    Zhang, Xianglin
    Wigneron, Jean-Pierre
    Xue, Jie
    Xiao, Yi
    Peng, Jie
    Shi, Zhou
    JOURNAL OF REMOTE SENSING, 2024, 4
  • [23] GOA-optimized deep learning for soybean yield estimation using multi-source remote sensing data
    Jian Lu
    Hongkun Fu
    Xuhui Tang
    Zhao Liu
    Jujian Huang
    Wenlong Zou
    Hui Chen
    Yue Sun
    Xiangyu Ning
    Jian Li
    Scientific Reports, 14
  • [24] Vertical Distribution Estimation of Maize LAI Using UAV Multi-source Remote Sensing
    Liu S.
    Jin X.
    Feng H.
    Nie C.
    Bai Y.
    Yu X.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2023, 54 (05): : 181 - 193and287
  • [25] The Transferability of Random Forest in Canopy Height Estimation from Multi-Source Remote Sensing Data
    Jin, Shichao
    Su, Yanjun
    Gao, Shang
    Hu, Tianyu
    Liu, Jin
    Guo, Qinghua
    REMOTE SENSING, 2018, 10 (08)
  • [26] Estimation of above-ground biomass of grassland based on multi-source remote sensing data
    Wang, X. (wxy_whu@hotmail.com), 1600, Chinese Society of Agricultural Engineering (30):
  • [27] Estimation of Leaf Area Index for Dendrocalamus giganteus Based on Multi-Source Remote Sensing Data
    Qin, Zhen
    Yang, Huanfen
    Shu, Qingtai
    Yu, Jinge
    Xu, Li
    Wang, Mingxing
    Xia, Cuifen
    Duan, Dandan
    FORESTS, 2024, 15 (07):
  • [28] Gas flaring detecting based on Normalized Hotspot Index using multi-source remote sensing data: a case study of Xinjiang
    Li, Yue
    Wu, Peng
    Zhang, Chengwen
    Zhao, Shuhe
    JOURNAL OF APPLIED REMOTE SENSING, 2024, 18 (04)
  • [29] Monitoring coal fires in Datong coalfield using multi-source remote sensing data
    Wang, Yun-jia
    Tian, Feng
    Huang, Yi
    Wang, Jian
    Wei, Chang-jing
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2015, 25 (10) : 3421 - 3428
  • [30] Soil moisture content inversion research using multi-source remote sensing data
    Zhang Chengcai
    Zhu Zule
    LAND SURFACE REMOTE SENSING II, 2014, 9260