Forest Fire Mapping Using Multi-Source Remote Sensing Data: A Case Study in Chongqing

被引:7
|
作者
Zhao, Yixin [1 ,2 ]
Huang, Yajun [1 ,2 ]
Sun, Xupeng [1 ,2 ]
Dong, Guanyu [1 ,2 ]
Li, Yuanqing [1 ,2 ]
Ma, Mingguo [1 ,2 ]
机构
[1] Southwest Univ, Sch Geog Sci, Chongqing Jinfo Mt Karst Ecosyst Natl Observat & R, Chongqing 400715, Peoples R China
[2] Southwest Univ, Chongqing Engn Res Ctr Remote Sensing Big Data App, Sch Geog Sci, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
multi-source remote sensing data; forest fire; burned area; fire severity; meteorological factors; DROUGHT INDEXES; CLIMATE; AUSTRALIA; FRAMEWORK; SEVERITY; WILDFIRE;
D O I
10.3390/rs15092323
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Forest fires are one of the most severe natural disasters facing global ecosystems, as they have a significant impact on ecological security and social development. As remote sensing technology has developed, burned areas can now be quickly extracted to support fire monitoring and post-disaster recovery. This study focused on monitoring forest fires that occurred in Chongqing, China, in August 2022. The burned area was identified using various satellite images, including Sentinel-2, Landsat8, Environmental Mitigation II A (HJ2A), and Gaofen-6 (GF-6). The burned area was extracted using visual interpretation, differenced Normalized Difference Vegetation Index (dNDVI), and differenced Normalized Burnup Ratio (dNBR). The results showed that: (1) The results of the three monitoring methods were very consistent, with a coefficient of determination R-2 > 0.96. (2) A threshold method based on the dNBR-extracted burned area was used to analyze fire severity, with moderate-severity fires making up the majority (58.05%) of the fires. (3) Different topographic factors had some influence on the severity of the forest fires. High elevation, steep slopes and the northwestern aspect had the largest percentage of burned area.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Integrating Multi-Source Remote Sensing Data for Forest Fire Risk Assessment
    Liu, Xinzhu
    Zheng, Change
    Wang, Guangyu
    Zhao, Fengjun
    Tian, Ye
    Li, Hongchen
    FORESTS, 2024, 15 (11):
  • [2] Forest Structure Mapping of Boreal Coniferous Forests Using Multi-Source Remote Sensing Data
    Sa, Rula
    Fan, Wenyi
    REMOTE SENSING, 2024, 16 (11)
  • [3] Mapping Forest Canopy Height over Continental China Using Multi-Source Remote Sensing Data
    Ni, Xiliang
    Zhou, Yuke
    Cao, Chunxiang
    Wang, Xuejun
    Shi, Yuli
    Park, Taejin
    Choi, Sungho
    Myneni, Ranga B.
    REMOTE SENSING, 2015, 7 (07) : 8436 - 8452
  • [4] Mapping Forest Aboveground Biomass Using Multi-Source Remote Sensing Data Based on the XGBoost Algorithm
    Wang, Dejun
    Xing, Yanqiu
    Fu, Anmin
    Tang, Jie
    Chang, Xiaoqing
    Yang, Hong
    Yang, Shuhang
    Li, Yuanxin
    FORESTS, 2025, 16 (02):
  • [5] Spatial Scaling of Forest Aboveground Biomass Using Multi-Source Remote Sensing Data
    Wang, Xinchuang
    Jiao, Haiming
    IEEE ACCESS, 2020, 8 : 178870 - 178885
  • [6] MAPPING AERODYNAMIC ROUGHNESS LENGTH WITH MULTI-SOURCE REMOTE SENSING DATA
    Hu, Deyong
    Cao, Shisong
    Chen, Shanshan
    Feng, Nan
    2016 4rth International Workshop on Earth Observation and Remote Sensing Applications (EORSA), 2016,
  • [7] Integrating multi-source remote sensing data for soil mapping in Victoria
    Abuzar, M
    Ryan, S
    IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 2495 - 2497
  • [8] High-resolution mapping of forest structure and carbon stock using multi-source remote sensing data in Japan
    Li, Hantao
    Hiroshima, Takuya
    Li, Xiaoxuan
    Hayashi, Masato
    Kato, Tomomichi
    REMOTE SENSING OF ENVIRONMENT, 2024, 312
  • [9] A Study on Urban Thermal Field of Shanghai Using Multi-source Remote Sensing Data
    Li, Cheng-Fan
    Yin, Jing-Yuan
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2013, 41 (04) : 1009 - 1019
  • [10] A Study on Urban Thermal Field of Shanghai Using Multi-source Remote Sensing Data
    Cheng-Fan Li
    Jing-Yuan Yin
    Journal of the Indian Society of Remote Sensing, 2013, 41 : 1009 - 1019