Bayesian Spectral Moment Estimation and Uncertainty Quantification

被引:3
|
作者
Cao, Norman M. [1 ]
Sciortino, Francesco [2 ]
机构
[1] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
关键词
Bayes methods; plasma measurements; spectroscopy; EFFICIENT;
D O I
10.1109/TPS.2019.2946952
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a Bayesian spectral fitting method developed for spectroscopic data analysis, particularly (but not solely) in the context of fusion energy research. The presented techniques are particularly valuable to estimating moments and corresponding uncertainties whenever the spectra result from line-integrated measurements in nonuniform plasmas, for which the approximation of atomic line shapes being ideal Gaussians gives poor estimates. We decompose multiple, potentially overlapping spectral lines into a sum of Gauss-Hermite polynomials, whose properties allow efficient truncation and uncertainty quantification, often with only three free parameters per atomic emission line. Tests with both synthetic and experimental data demonstrate the effectiveness and robustness where more standard nonlinear fitting routines may experience difficulties. A parallelized version of our implementation is publicly released under an open source license(1).
引用
收藏
页码:22 / 30
页数:9
相关论文
共 50 条
  • [31] Bayesian uncertainty quantification of local volatility model
    Kai Yin
    Anirban Mondal
    Sankhya B, 2023, 85 : 290 - 324
  • [32] UNCERTAINTY QUANTIFICATION THROUGH BAYESIAN NONPARAMETRIC MODELLING
    Kockova, E.
    Kucerova, A.
    Sykora, J.
    ENGINEERING MECHANICS 2020 (IM2020), 2020, : 274 - 277
  • [33] Bayesian uncertainty quantification for nuclear matter incompressibility
    Xu, Jun
    Zhang, Zhen
    Li, Bao-An
    PHYSICAL REVIEW C, 2021, 104 (05)
  • [34] Bayesian uncertainty quantification of local volatility model
    Yin, Kai
    Mondal, Anirban
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2023, 85 (SUPPL 1): : 290 - 324
  • [35] Bayesian uncertainty quantification for anaerobic digestion models
    Picard-Weibel, Antoine
    Capson-Tojo, Gabriel
    Guedj, Benjamin
    Moscoviz, Roman
    BIORESOURCE TECHNOLOGY, 2024, 394
  • [36] Bayesian Solution Uncertainty Quantification for Differential Equations
    Yoo, William Weimin
    BAYESIAN ANALYSIS, 2016, 11 (04): : 1288 - 1289
  • [37] A comparison of two Bayesian approaches for uncertainty quantification
    Mara, Thierry A.
    Delay, Frederick
    Lehmann, Francois
    Younes, Anis
    ENVIRONMENTAL MODELLING & SOFTWARE, 2016, 82 : 21 - 30
  • [38] Bayesian uncertainty quantification for synthesizing superheavy elements
    Fang, Yueping
    Gao, Zepeng
    Zhang, Yinu
    Liao, Zehong
    Yang, Yu
    Su, Jun
    Zhu, Long
    PHYSICS LETTERS B, 2024, 858
  • [39] Bayesian uncertainty quantification for magnetic resonance fingerprinting
    Metzner, Selma
    Wubbeler, Gerd
    Flassbeck, Sebastian
    Gatefait, Constance
    Kolbitsch, Christoph
    Elster, Clemens
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (07):
  • [40] Investigations on Bayesian uncertainty quantification with two examples
    Preuss, R.
    von Toussaint, U.
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2016, 1757