Bayesian Spectral Moment Estimation and Uncertainty Quantification

被引:3
|
作者
Cao, Norman M. [1 ]
Sciortino, Francesco [2 ]
机构
[1] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
关键词
Bayes methods; plasma measurements; spectroscopy; EFFICIENT;
D O I
10.1109/TPS.2019.2946952
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a Bayesian spectral fitting method developed for spectroscopic data analysis, particularly (but not solely) in the context of fusion energy research. The presented techniques are particularly valuable to estimating moments and corresponding uncertainties whenever the spectra result from line-integrated measurements in nonuniform plasmas, for which the approximation of atomic line shapes being ideal Gaussians gives poor estimates. We decompose multiple, potentially overlapping spectral lines into a sum of Gauss-Hermite polynomials, whose properties allow efficient truncation and uncertainty quantification, often with only three free parameters per atomic emission line. Tests with both synthetic and experimental data demonstrate the effectiveness and robustness where more standard nonlinear fitting routines may experience difficulties. A parallelized version of our implementation is publicly released under an open source license(1).
引用
收藏
页码:22 / 30
页数:9
相关论文
共 50 条
  • [21] Ship source level estimation and uncertainty quantification in shallow water via Bayesian marginalization
    Tollefsen, Dag
    Dosso, Stan E.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2020, 147 (04): : EL339 - EL344
  • [22] Bayesian Inverse Transient Analysis for Pipeline Condition Assessment: Parameter Estimation and Uncertainty Quantification
    Chi Zhang
    Martin F. Lambert
    Jinzhe Gong
    Aaron C. Zecchin
    Angus R. Simpson
    Mark L. Stephens
    Water Resources Management, 2020, 34 : 2807 - 2820
  • [23] Bayesian Inverse Transient Analysis for Pipeline Condition Assessment: Parameter Estimation and Uncertainty Quantification
    Zhang, Chi
    Lambert, Martin F.
    Gong, Jinzhe
    Zecchin, Aaron C.
    Simpson, Angus R.
    Stephens, Mark L.
    WATER RESOURCES MANAGEMENT, 2020, 34 (09) : 2807 - 2820
  • [24] Bayesian estimation and uncertainty quantification in models of urea hydrolysis by E. coli biofilms
    Jackson, Benjamin D.
    Connolly, James M.
    Gerlach, Robin
    Klapper, Isaac
    Parker, Albert E.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2021, 29 (11) : 1629 - 1652
  • [25] Sparse moment quadrature for uncertainty modeling and quantification
    Guan, Xuefei
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 241
  • [26] Estimation of the uncertainty of the quantification limit
    Badocco, Denis
    Lavagnini, Irma
    Mondin, Andrea
    Pastore, Paolo
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2014, 96 : 8 - 11
  • [27] Gaussian Processes and Bayesian Moment Estimation
    Florens, Jean-Pierre
    Simoni, Anna
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2021, 39 (02) : 482 - 492
  • [28] A Bayesian Augmented-Learning framework for spectral uncertainty quantification of incomplete records of stochastic processes
    Chen, Yu
    Patelli, Edoardo
    Edwards, Benjamin
    Beer, Michael
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 200
  • [29] Bayesian Nonparametric Spectral Estimation
    Tobar, Felipe
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [30] Bayesian autoregressive spectral estimation
    Cuevas, Alejandro
    Lopez, Sebastian
    Mandic, Danilo
    Tobar, Felipe
    2021 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2021,