Congruences with intervals and arbitrary sets

被引:5
|
作者
Banks, William [1 ]
Shparlinski, Igor [2 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Univ New South Wales, Dept Pure Math, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
Congruences; Character sums; Kloosterman sums; BILINEAR-FORMS; KLOOSTERMAN; SUMS; VALUES;
D O I
10.1007/s00013-019-01421-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a prime p, an integer H is an element of [1, p), and an arbitrary set M subset of F* p, where F-p is the finite field with p elements, let J(H, M) denote the number of solutions to the congruence xm equivalent to yn mod p for which x, y is an element of [1, H] and m, n is an element of M. In this paper, we bound J(H, M) in terms of p, H, and the cardinality of M. In a wide range of parameters, this bound is optimal. We give two applications of this bound: to new estimates of trilinear character sums and to bilinear sums with Kloosterman sums, complementing some recent results of Kowalski et al. (Stratification and averaging for exponential sums: bilinear forms with generalized Kloosterman sums, 2018, arXiv:1802.09849).
引用
收藏
页码:527 / 539
页数:13
相关论文
共 50 条