SYSTEMS OF CONGRUENCES WITH PRODUCTS OF VARIABLES FROM SHORT INTERVALS

被引:0
|
作者
Shparlinski, Igor E. [1 ]
机构
[1] Univ New S Wales, Dept Pure Math, Sydney, NSW 2052, Australia
关键词
multiplicative congruences; resultant; common roots; PSEUDORANDOM BINARY LATTICES; K SYMBOLS; SEQUENCES; FIELDS; SUMS;
D O I
10.1017/S0004972715001240
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain an upper bound for the number of solutions to the system of m congruences of the type Pi(v)(i=1)(x(i) + s(i)) equivalent to lambda(j) (mod p) j = 1, . . . , m, modulo a prime p, with variables 1 <= x(i) <= h, i = 1, . . . , v and arbitrary integers s(j), lambda(j), j = 1, . . . , m, for a parameter h significantly smaller than p. We also mention some applications of this bound.
引用
收藏
页码:364 / 371
页数:8
相关论文
共 50 条
  • [1] ON CONGRUENCES INVOLVING PRODUCTS OF VARIABLES FROM SHORT INTERVALS
    Garaev, M. Z.
    QUARTERLY JOURNAL OF MATHEMATICS, 2018, 69 (03): : 769 - 778
  • [2] On congruences with products of variables from short intervals and applications
    Jean Bourgain
    Moubariz Z. Garaev
    Sergei V. Konyagin
    Igor E. Shparlinski
    Proceedings of the Steklov Institute of Mathematics, 2013, 280 : 61 - 90
  • [3] On Congruences with Products of Variables from Short Intervals and Applications
    Bourgain, Jean
    Garaev, Moubariz Z.
    Konyagin, Sergei V.
    Shparlinski, Igor E.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2013, 280 (01) : 61 - 90
  • [4] Multiplicative congruences with variables from short intervals
    Jean Bourgain
    Moubariz Z. Garaev
    Sergei V. Konyagin
    Igor E. Shparlinski
    Journal d'Analyse Mathématique, 2014, 124 : 117 - 147
  • [5] Multiplicative congruences with variables from short intervals
    Bourgain, Jean
    Garaev, Moubariz Z.
    Konyagin, Sergei V.
    Shparlinski, Igor E.
    JOURNAL D ANALYSE MATHEMATIQUE, 2014, 124 : 117 - 147
  • [6] PRODUCTS OF INTEGERS IN SHORT INTERVALS
    ERDOS, P
    TURK, J
    ACTA ARITHMETICA, 1984, 44 (02) : 147 - 174
  • [7] INFINITE SYSTEMS OF LINEAR CONGRUENCES WITH INFINITELY MANY VARIABLES
    BOHR, H
    FOLNER, E
    MATEMATISK-FYSISKE MEDDELELSER KONGELIGE DANSKE VIDENSKABERNES SELSKAB, 1948, 24 (12): : 1 - 35
  • [8] On the distribution in short intervals of products of a prime and integers from a given set
    Kaczorowski, J
    Perelli, A
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 124 : 1 - 14
  • [9] Congruences with intervals and arbitrary sets
    William Banks
    Igor Shparlinski
    Archiv der Mathematik, 2020, 114 : 527 - 539
  • [10] Congruences with intervals and arbitrary sets
    Banks, William
    Shparlinski, Igor
    ARCHIV DER MATHEMATIK, 2020, 114 (05) : 527 - 539