Congruences with intervals and arbitrary sets

被引:5
|
作者
Banks, William [1 ]
Shparlinski, Igor [2 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Univ New South Wales, Dept Pure Math, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
Congruences; Character sums; Kloosterman sums; BILINEAR-FORMS; KLOOSTERMAN; SUMS; VALUES;
D O I
10.1007/s00013-019-01421-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a prime p, an integer H is an element of [1, p), and an arbitrary set M subset of F* p, where F-p is the finite field with p elements, let J(H, M) denote the number of solutions to the congruence xm equivalent to yn mod p for which x, y is an element of [1, H] and m, n is an element of M. In this paper, we bound J(H, M) in terms of p, H, and the cardinality of M. In a wide range of parameters, this bound is optimal. We give two applications of this bound: to new estimates of trilinear character sums and to bilinear sums with Kloosterman sums, complementing some recent results of Kowalski et al. (Stratification and averaging for exponential sums: bilinear forms with generalized Kloosterman sums, 2018, arXiv:1802.09849).
引用
收藏
页码:527 / 539
页数:13
相关论文
共 50 条
  • [1] Congruences with intervals and arbitrary sets
    William Banks
    Igor Shparlinski
    Archiv der Mathematik, 2020, 114 : 527 - 539
  • [2] BINARY AND TERNARY CONGRUENCES INVOLVING INTERVALS AND SETS MODULO A PRIME
    Garaev, Moubariz z.
    Pardo, Julio c.
    Shparlinski, Igor e.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2025,
  • [3] Double Character Sums with Intervals and Arbitrary Sets
    Shkredov, Ilya D.
    Shparlinski, Igor E.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2018, 303 (01) : 239 - 258
  • [4] Double Character Sums with Intervals and Arbitrary Sets
    Ilya D. Shkredov
    Igor E. Shparlinski
    Proceedings of the Steklov Institute of Mathematics, 2018, 303 : 239 - 258
  • [5] Congruences involving product of intervals and sets with small multiplicative doubling modulo a prime and applications
    Cilleruelo, J.
    Garaev, M. Z.
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2016, 160 (03) : 477 - 494
  • [6] SETS OF COVERING CONGRUENCES
    SWIFT, JD
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 60 (04) : 390 - 390
  • [7] Congruences with Intervals and Subgroups Modulo a Prime
    Munsch, Marc
    Shparlinski, Igor E.
    MICHIGAN MATHEMATICAL JOURNAL, 2015, 64 (03) : 655 - 672
  • [8] Multiplicative congruences with variables from short intervals
    Jean Bourgain
    Moubariz Z. Garaev
    Sergei V. Konyagin
    Igor E. Shparlinski
    Journal d'Analyse Mathématique, 2014, 124 : 117 - 147
  • [9] Multiplicative congruences with variables from short intervals
    Bourgain, Jean
    Garaev, Moubariz Z.
    Konyagin, Sergei V.
    Shparlinski, Igor E.
    JOURNAL D ANALYSE MATHEMATIQUE, 2014, 124 : 117 - 147
  • [10] On sandwich sets and congruences on regular semigroups
    Petrich, M
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2006, 56 (01) : 27 - 46