Achievability of a supremum for the Hardy-Littlewood-Sobolev inequality with supercritical exponent

被引:2
|
作者
An, Xiaoming [1 ]
Peng, Shuangjie [1 ]
Xie, Chaodong [2 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China
[2] Guizhou Univ Ethin Minor, Sch Econ Management, Guiyang 550025, Peoples R China
基金
中国国家自然科学基金;
关键词
Hardy-Littlewood-Sobolev inequality; achievability of a supremum; supercritical exponent;
D O I
10.1007/s11425-018-9484-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that the supremum sup {integral(B)integral(B) vertical bar u(y)vertical bar(p(vertical bar y vertical bar))vertical bar u(x)vertical bar(p(vertical bar x vertical bar)) /vertical bar x - y vertical bar(mu) dxdy : u is an element of H-0,H- (1)(rad) (B), parallel to del u parallel to(L2(B)) = 1} is attained, where B denotes the unit ball in R-N (N >= 3), mu is an element of (0,N), p(r) = 2(mu)* + r(t), t is an element of (0, min{N/2 - mu/4, N - 2}) and 2(mu)* = (2N - mu)/(N - 2) is the critical exponent for the Hardy-Littlewood-Sobolev inequality.
引用
收藏
页码:2497 / 2504
页数:8
相关论文
共 50 条
  • [41] Nonlinear perturbations of a periodic magnetic Choquard equation with Hardy-Littlewood-Sobolev critical exponent
    Bueno, H.
    da Hora Lisboa, N.
    Vieira, L. L.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (04):
  • [42] Normalized Solutions for the Fractional Choquard Equations with Hardy-Littlewood-Sobolev Upper Critical Exponent
    Meng, Yuxi
    He, Xiaoming
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (01)
  • [43] Normalized solutions to the nonlinear Choquard equations with Hardy-Littlewood-Sobolev upper critical exponent
    Shang, Xudong
    Ma, Pei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 521 (02)
  • [44] Existence and uniqueness of solutions for Choquard equation involving Hardy-Littlewood-Sobolev critical exponent
    Guo, Lun
    Hu, Tingxi
    Peng, Shuangjie
    Shuai, Wei
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (04)
  • [45] On discrete reversed Hardy-Littlewood-Sobolev inequalities
    Zhou, Tiantian
    Lei, Yutian
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2025,
  • [46] A NONEXISTENCE RESULT FOR DISCRETE SYSTEMS RELATED TO THE REVERSED HARDY-LITTLEWOOD-SOBOLEV INEQUALITY
    Tang, Ting
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (02): : 433 - 438
  • [47] Bound state solutions of fractional Choquard equation with Hardy-Littlewood-Sobolev critical exponent
    Yang, Xiaolong
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (05):
  • [48] Multiple solutions for nonhomogeneous Choquard equation involving Hardy-Littlewood-Sobolev critical exponent
    Shen, Zifei
    Gao, Fashun
    Yang, Minbo
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (03):
  • [49] SOBOLEV AND HARDY-LITTLEWOOD-SOBOLEV INEQUALITIES: DUALITY AND FAST DIFFUSION
    Dolbeault, Jean
    MATHEMATICAL RESEARCH LETTERS, 2011, 18 (06) : 1037 - 1050
  • [50] CLASSIFICATION OF EXTREMAL FUNCTIONS TO LOGARITHMIC HARDY-LITTLEWOOD-SOBOLEV INEQUALITY ON THE UPPER HALF SPACE
    Dou, Jingbo
    Li, Ye
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (08) : 3939 - 3953