Achievability of a supremum for the Hardy-Littlewood-Sobolev inequality with supercritical exponent

被引:2
|
作者
An, Xiaoming [1 ]
Peng, Shuangjie [1 ]
Xie, Chaodong [2 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China
[2] Guizhou Univ Ethin Minor, Sch Econ Management, Guiyang 550025, Peoples R China
基金
中国国家自然科学基金;
关键词
Hardy-Littlewood-Sobolev inequality; achievability of a supremum; supercritical exponent;
D O I
10.1007/s11425-018-9484-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that the supremum sup {integral(B)integral(B) vertical bar u(y)vertical bar(p(vertical bar y vertical bar))vertical bar u(x)vertical bar(p(vertical bar x vertical bar)) /vertical bar x - y vertical bar(mu) dxdy : u is an element of H-0,H- (1)(rad) (B), parallel to del u parallel to(L2(B)) = 1} is attained, where B denotes the unit ball in R-N (N >= 3), mu is an element of (0,N), p(r) = 2(mu)* + r(t), t is an element of (0, min{N/2 - mu/4, N - 2}) and 2(mu)* = (2N - mu)/(N - 2) is the critical exponent for the Hardy-Littlewood-Sobolev inequality.
引用
收藏
页码:2497 / 2504
页数:8
相关论文
共 50 条
  • [31] Hardy-Littlewood-Sobolev Inequality on Mixed-Norm Lebesgue Spaces
    Chen, Ting
    Sun, Wenchang
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (03)
  • [32] Reverse Hardy-Littlewood-Sobolev inequalities
    Carrillo, Jose A.
    Delgadino, Matias G.
    Dolbeault, Jean
    Frank, Rupert L.
    Hoffmann, Franca
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 132 : 133 - 165
  • [33] Groundstates for Choquard type equations with Hardy-Littlewood-Sobolev lower critical exponent
    Cassani, Daniele
    Van Schaftingen, Jean
    Zhang Jianjun
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (03) : 1377 - 1400
  • [34] Necessary and Sufficient Conditions of Doubly Weighted Hardy-Littlewood-Sobolev Inequality
    Zuoshunhua Shi
    Wu Di
    Dunyan Yan
    Analysis in Theory and Applications, 2014, 30 (02) : 193 - 204
  • [35] Bound states of fractional Choquard equations with Hardy-Littlewood-Sobolev critical exponent
    Guan, Wen
    Radulescu, Vicentiu D.
    Wang, Da-Bin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 355 : 219 - 247
  • [36] Existence of groundstates for Choquard type equations with Hardy-Littlewood-Sobolev critical exponent
    Li, Xiaowei
    Wang, Feizhi
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [37] Fractional Kirchhoff-type equation with Hardy-Littlewood-Sobolev critical exponent
    Su, Yu
    Chen, Haibo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (06) : 2063 - 2082
  • [38] Elliptic equations in RN involving Sobolev supercritical and upper Hardy-Littlewood-Sobolev critical exponents
    Madeira, Gustavo Ferron
    Miyagaki, Olimpio Hiroshi
    Pucci, Patrizia
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 425 : 274 - 299
  • [39] Multiple solutions to the Kirchhoff fractional equation involving Hardy-Littlewood-Sobolev critical exponent
    Wang, Jichao
    Zhang, Jian
    Cui, Yujun
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
  • [40] On the shape of solutions to an integral system related to the weighted Hardy-Littlewood-Sobolev inequality
    Onodera, Michiaki
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) : 498 - 510