Lindley-type equations in the branching random walk

被引:26
|
作者
Biggins, JD
机构
[1] Univ Sheffield, Dept Probabil & Stat, Sheffield S3 7RH, S Yorkshire, England
[2] Univ Minnesota, Inst Math & Applicat, Minneapolis, MN 55455 USA
关键词
maxima; extreme values; functional equations;
D O I
10.1016/S0304-4149(98)00016-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An analogue of the Lindley equation for random walk is studied in the context of the branching random walk, taking up the studies of Karpelevich, Kelbert and Suhov [(1993a) In: Boccara, N., Goles, E., Martinez, S., Picco, P. (Eds.), Cellular Automata and Cooperative Behaviour. Kluwer, Dordrecht, pp. 323-342; (1994a) Stochast. Process. Appl. 53, 65-96]. The main results are: (i) close to necessary conditions for the equation to have a solution, (ii) mild conditions for there to be a one-parameter family of solutions and (iii) mild conditions for this family to be the only possible solutions. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:105 / 133
页数:29
相关论文
共 50 条
  • [31] Branching random walk with a single source
    Albeverio, S
    Bogachev, LV
    Yarovaya, EB
    COMMUNICATIONS IN DIFFERENCE EQUATIONS, 2000, : 9 - 19
  • [32] On the boundary at infinity for branching random walk
    Candellero, Elisabetta
    Hutchcroft, Tom
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2023, 28
  • [33] On the support of the simple branching random walk
    Johnson, Torrey
    STATISTICS & PROBABILITY LETTERS, 2014, 91 : 107 - 109
  • [34] On the Multifractal Analysis of the Branching Random Walk in
    Attia, Najmeddine
    JOURNAL OF THEORETICAL PROBABILITY, 2014, 27 (04) : 1329 - 1349
  • [35] ON THE DERIVATIVE MARTINGALE IN A BRANCHING RANDOM WALK
    Buraczewski, Dariusz
    Iksanov, Alexander
    Mallein, Bastien
    ANNALS OF PROBABILITY, 2021, 49 (03): : 1164 - 1204
  • [36] A prediction problem of the branching random walk
    Révész, P
    JOURNAL OF APPLIED PROBABILITY, 2004, 41A : 25 - 31
  • [37] MINIMAL POSITIONS IN A BRANCHING RANDOM WALK
    McDiarmid, Colin
    ANNALS OF APPLIED PROBABILITY, 1995, 5 (01): : 128 - 139
  • [38] The spread of a catalytic branching random walk
    Carmona, Philippe
    Hu, Yueyun
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (02): : 327 - 351
  • [39] A N-branching random walk with random selection
    Cortines, Aser
    Mallein, Bastien
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2017, 14 (01): : 117 - 137
  • [40] Branching annihilating random walk on random regular graphs
    Szabó, G
    PHYSICAL REVIEW E, 2000, 62 (05): : 7474 - 7477