Lindley-type equations in the branching random walk

被引:26
|
作者
Biggins, JD
机构
[1] Univ Sheffield, Dept Probabil & Stat, Sheffield S3 7RH, S Yorkshire, England
[2] Univ Minnesota, Inst Math & Applicat, Minneapolis, MN 55455 USA
关键词
maxima; extreme values; functional equations;
D O I
10.1016/S0304-4149(98)00016-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An analogue of the Lindley equation for random walk is studied in the context of the branching random walk, taking up the studies of Karpelevich, Kelbert and Suhov [(1993a) In: Boccara, N., Goles, E., Martinez, S., Picco, P. (Eds.), Cellular Automata and Cooperative Behaviour. Kluwer, Dordrecht, pp. 323-342; (1994a) Stochast. Process. Appl. 53, 65-96]. The main results are: (i) close to necessary conditions for the equation to have a solution, (ii) mild conditions for there to be a one-parameter family of solutions and (iii) mild conditions for this family to be the only possible solutions. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:105 / 133
页数:29
相关论文
共 50 条
  • [1] A non-increasing Lindley-type equation
    Vlasiou, Maria
    QUEUEING SYSTEMS, 2007, 56 (01) : 41 - 52
  • [2] A non-increasing Lindley-type equation
    Maria Vlasiou
    Queueing Systems, 2007, 56 : 41 - 52
  • [3] A Lindley-type equation arising from a carousel problem
    Vlasiou, M
    Adan, IJBF
    Wessels, J
    JOURNAL OF APPLIED PROBABILITY, 2004, 41 (04) : 1171 - 1181
  • [4] Exact solution to a Lindley-type equation on a bounded support
    Vlasiou, M.
    Adan, I. J. B. F.
    OPERATIONS RESEARCH LETTERS, 2007, 35 (01) : 105 - 113
  • [5] Some limit theorems for extreme values of Lindley-type processes
    Akbash, Kateryna
    Matsak, Ivan
    Zakusylo, Oleg
    LITHUANIAN MATHEMATICAL JOURNAL, 2025, : 1 - 13
  • [6] A Lindley-Type Distribution for Modeling High-Kurtosis Data
    Rojas, Mario A.
    Iriarte, Yuri A.
    MATHEMATICS, 2022, 10 (13)
  • [7] On fluctuation-theoretic decompositions via Lindley-type recursions
    Boxma, Onno
    Kella, Offer
    Mandjes, Michel
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2023, 165 : 316 - 336
  • [8] Random walk on barely supercritical branching random walk
    van der Hofstad, Remco
    Hulshof, Tim
    Nagel, Jan
    PROBABILITY THEORY AND RELATED FIELDS, 2020, 177 (1-2) : 1 - 53
  • [9] Random walk on barely supercritical branching random walk
    Remco van der Hofstad
    Tim Hulshof
    Jan Nagel
    Probability Theory and Related Fields, 2020, 177 : 1 - 53
  • [10] The geometric convergence rate of a Lindley random walk
    Lund, RB
    JOURNAL OF APPLIED PROBABILITY, 1997, 34 (03) : 806 - 811