Oversmoothing Tikhonov regularization in Banach spaces *

被引:3
|
作者
Chen, De-Han [1 ,2 ]
Hofmann, Bernd [3 ]
Yousept, Irwin [4 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China
[3] Tech Univ Chemnitz, Fac Math, D-09107 Chemnitz, Germany
[4] Univ Duisburg Essen, Fak Math, Thea Leymann Str 9, D-45127 Essen, Germany
基金
中国国家自然科学基金;
关键词
nonlinear ill-posed operator equation; oversmoothing Tikhonov regularization; Banach spaces; sectorial operators; interpolation Banach scales; Besov spaces; inverse radiative problems; EQUATIONS; RATES;
D O I
10.1088/1361-6420/abcea0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper develops a Tikhonov regularization theory for nonlinear ill-posed operator equations in Banach spaces. As the main challenge, we consider the so-called oversmoothing state in the sense that the Tikhonov penalization is not able to capture the true solution regularity and leads to the infinite penalty value in the solution. We establish a vast extension of the Hilbertian convergence theory through the use of invertible sectorial operators from the holomorphic functional calculus and the prominent theory of interpolation scales in Banach spaces. Applications of the proposed theory involving l (1), Bessel potential spaces, and Besov spaces are discussed.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Regularization by discretization in Banach spaces
    Haemarik, Uno
    Kaltenbacher, Barbara
    Kangro, Urve
    Resmerita, Elena
    INVERSE PROBLEMS, 2016, 32 (03)
  • [32] NON-LINEAR TIKHONOV REGULARIZATION IN BANACH SPACES FOR INVERSE SCATTERING FROM ANISOTROPIC PENETRABLE MEDIA
    Lechleiter, Armin
    Rennoch, Marcel
    INVERSE PROBLEMS AND IMAGING, 2017, 11 (01) : 151 - 176
  • [33] Tikhonov regularization with oversmoothing penalty for non-linear ill-posed problems in Hilbert scales
    Hofmann, Bernd
    Mathe, Peter
    INVERSE PROBLEMS, 2018, 34 (01)
  • [34] OPTIMAL CONVERGENCE RATES FOR TIKHONOV REGULARIZATION IN BESOV SPACES
    Weidling, Frederic
    Sprung, Benjamin
    Hohage, Thorsten
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (01) : 21 - 47
  • [35] Discretization of variational regularization in Banach spaces
    Poeschl, Christiane
    Resmerita, Elena
    Scherzer, Otmar
    INVERSE PROBLEMS, 2010, 26 (10)
  • [36] Preconditioned iterative regularization in Banach spaces
    Paola Brianzi
    Fabio Di Benedetto
    Claudio Estatico
    Computational Optimization and Applications, 2013, 54 : 263 - 282
  • [37] An adaptive regularization method in Banach spaces
    Gratton, S.
    Jerad, S.
    Toint, Ph. L.
    OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (06): : 1163 - 1179
  • [38] Preconditioned iterative regularization in Banach spaces
    Brianzi, Paola
    Di Benedetto, Fabio
    Estatico, Claudio
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2013, 54 (02) : 263 - 282
  • [40] A Tikhonov-type regularization for equilibrium problems in Hilbert spaces
    Oliveira, P. R.
    Santos, P. S. M.
    Silva, A. N.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (01) : 336 - 342