An adaptive regularization method in Banach spaces

被引:0
|
作者
Gratton, S. [1 ,4 ]
Jerad, S. [2 ]
Toint, Ph. L. [3 ]
机构
[1] Univ Toulouse, IRIT, INP, Toulouse, France
[2] Univ Toulouse, ANITI, IRIT, INP, Toulouse, France
[3] Univ Namur, NAXYS, Namur, Belgium
[4] 10 Rue Charles Camichelles, Toulouse, France
来源
OPTIMIZATION METHODS & SOFTWARE | 2023年 / 38卷 / 06期
关键词
Nonlinear optimization; adaptive regularization; evaluation complexity; Holder gradients; infinite-dimensional problems; CASE EVALUATION COMPLEXITY; CUBIC REGULARIZATION; MESH-INDEPENDENCE; NEWTON METHODS; TRUST-REGION; OPTIMIZATION; INEQUALITIES; CONVERGENCE; ALGORITHMS; NORM;
D O I
10.1080/10556788.2023.2210253
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper considers optimization of nonconvex functionals in smooth infinite dimensional spaces. It is first proved that functionals in a class containing multivariate polynomials augmented with a sufficiently smooth regularization can be minimized by a simple linesearch-based algorithm. Sufficient smoothness depends on gradients satisfying a novel two-terms generalized Lipschitz condition. A first-order adaptive regularization method applicable to functionals with beta-Holder continuous derivatives is then proposed, that uses the linesearch approach to compute a suitable trial step. It is shown to find an is an element of -approximate first-order point in at most O( is an element of - p+ ss/p+ss-1) evaluations of the functional and its first p derivatives.
引用
收藏
页码:1163 / 1179
页数:17
相关论文
共 50 条
  • [1] On regularization in Banach spaces
    Stromberg, T
    ARKIV FOR MATEMATIK, 1996, 34 (02): : 383 - 406
  • [2] On convergence of approximations criterion for regularization method in Banach spaces
    Menikhes, LD
    Tanana, VP
    DOKLADY AKADEMII NAUK, 1998, 363 (05) : 599 - 601
  • [3] Regularization by discretization in Banach spaces
    Haemarik, Uno
    Kaltenbacher, Barbara
    Kangro, Urve
    Resmerita, Elena
    INVERSE PROBLEMS, 2016, 32 (03)
  • [4] The Galerkin Method and Regularization for Variational Inequalities in Reflexive Banach Spaces
    Kien, Bui Trong
    Qin, Xiaolong
    Wen, Ching-Feng
    Yao, Jen-Chih
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 189 (02) : 578 - 596
  • [5] TIKHONOV REGULARIZATION METHOD FOR A SYSTEM OF EQUILIBRIUM PROBLEMS IN BANACH SPACES
    Nguyen Buong
    Dang Thi Hai Ha
    UKRAINIAN MATHEMATICAL JOURNAL, 2009, 61 (08) : 1302 - 1310
  • [6] STOCHASTIC REGULARIZATION METHOD FOR BACKWARD CAUCHY PROBLEM IN BANACH SPACES
    Burrage, K.
    van Casteren, J.
    Piskarev, S.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (10) : 1019 - 1040
  • [7] Tikhonov regularization method for a system of equilibrium problems in Banach spaces
    Buong N.
    Hai Ha D.T.
    Ukrainian Mathematical Journal, 2009, 61 (8) : 1302 - 1310
  • [8] The Galerkin Method and Regularization for Variational Inequalities in Reflexive Banach Spaces
    Bui Trong Kien
    Xiaolong Qin
    Ching-Feng Wen
    Jen-Chih Yao
    Journal of Optimization Theory and Applications, 2021, 189 : 578 - 596
  • [9] Discretization of variational regularization in Banach spaces
    Poeschl, Christiane
    Resmerita, Elena
    Scherzer, Otmar
    INVERSE PROBLEMS, 2010, 26 (10)
  • [10] Oversmoothing Tikhonov regularization in Banach spaces *
    Chen, De-Han
    Hofmann, Bernd
    Yousept, Irwin
    INVERSE PROBLEMS, 2021, 37 (08)