Minimax Estimation of Information Measures

被引:0
|
作者
Jiao, Jiantao [1 ]
Venkat, Kartik [1 ]
Han, Yanjun [2 ]
Weissman, Tsachy [1 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] Tsinghua Univ, Beijing, Peoples R China
关键词
ENTROPY;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a general methodology for the construction and analysis of minimax estimators for functionals of discrete distributions, where the support size 5 is unknown and may he comparable to the number of observations n. We illustrate the merit of our approach by thoroughly analyzing non-asymptotically the performance of the resulting schemes for estimating two important information measures: the entropy H (P) = Sigma(S)(i=1) -p(i) In p(i) and F-alpha (P) Sigma(S)(i=1) p(i)(alpha), alpha > 0. We obtain the minimax L-2 risks for estimating these functionals up to a universal constant. In particular, we demonstrate that our estimator achieves the optimal sample complexity n >> S/ In S for entropy estimation. We also demonstrate that the sample complexity for estimating F-alpha(P), 0 < alpha < perpendicular to is n >> S-1/alpha/In S, which can he achieved by our estimator and not by the popular plug-in Maximum Likelihood Estimator (MLE). For I < alpha < 3/2, we show the minimax L2 rate for estimating F-alpha(P) is (n In n) -2((alpha-1)) regardless of the support size, while the exact L-2 rate for the MLE is n(-2(alpha - 1)). For all the above cases, the behavior of the minimax rate-optimal estimators with a samples is essentially that of the MLE with o In n samples. Finally, we highlight the practical advantages of our schemes for the estimation of entropy and nmtual information.
引用
收藏
页码:2296 / 2300
页数:5
相关论文
共 50 条
  • [41] Spectral theory of minimax estimation
    Girko, VL
    ACTA APPLICANDAE MATHEMATICAE, 1996, 43 (01) : 59 - 69
  • [42] Minimax estimation by probabilistic criterion
    Pankov, A. R.
    Semenikhin, K. V.
    AUTOMATION AND REMOTE CONTROL, 2007, 68 (03) : 430 - 445
  • [43] Minimax estimation with intermittent observations
    Moon, Jun
    Basar, Tamer
    AUTOMATICA, 2015, 62 : 122 - 133
  • [44] A Near-Optimal (Minimax) Tree-Structured Partition for Mutual Information Estimation
    Silva, Jorge
    Narayanan, Shrikanth S.
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1418 - 1422
  • [45] Minimax and minimax-Bayesian estimation of linear regression parameters
    Solovev, VN
    RUSSIAN MATHEMATICAL SURVEYS, 1996, 51 (03) : 563 - 564
  • [46] AUGMENTED MINIMAX LINEAR ESTIMATION
    Hirshberg, David A.
    Wager, Stefan
    ANNALS OF STATISTICS, 2021, 49 (06): : 3206 - 3227
  • [47] MINIMAX NONPARAMETRIC-ESTIMATION
    WILCZYNSKI, M
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1992, 54 : 425 - 431
  • [48] The minimax cylinder estimation problem
    Radhakrishnan, S
    Ventura, JA
    Ramaswamy, SE
    JOURNAL OF MANUFACTURING SYSTEMS, 1998, 17 (02) : 97 - 106
  • [49] Minimax estimation for hybrid systems
    Melody, JW
    Basar, T
    PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 3620 - 3625
  • [50] Interplay of minimax estimation and minimax support recovery under sparsity
    Ndaoud, Mohamed
    ALGORITHMIC LEARNING THEORY, VOL 98, 2019, 98