Interplay of minimax estimation and minimax support recovery under sparsity

被引:0
|
作者
Ndaoud, Mohamed [1 ]
机构
[1] ENSAE, CNRS, UMR 9194, Dept Stat,CREST, 5 Ave Henry Le Chatelier, F-91764 Palaiseau, France
来源
关键词
High-dimensional estimation under sparsity; SLOPE estimator; Hamming loss; exact support recovery; non-asymptotic minimax risk; adaptive estimation; VARIABLE SELECTION; SLOPE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we study a new notion of scaled minimaxity for sparse estimation in high-dimensional linear regression model. We present more optimistic lower bounds than the one given by the classical minimax theory and hence improve on existing results. We recover sharp results for the global minimaxity as a consequence of our study. Fixing the scale of the signal-to-noise ratio, we prove that the estimation error can be much smaller than the global minimax error. We construct a new optimal estimator for the scaled minimax sparse estimation. An optimal adaptive procedure is also described.
引用
收藏
页数:22
相关论文
共 50 条