Design of SARS-CoV-2 Mpro, PLpro dual-target inhibitors based on deep reinforcement learning and virtual screening

被引:24
|
作者
Zhang, Li-chuan [1 ]
Zhao, Hui-lin [1 ]
Liu, Jin [1 ]
He, Lei [1 ]
Yu, Ri-lei [2 ]
Kang, Cong-min [1 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Chem Engn, Qingdao 266042, Peoples R China
[2] Ocean Univ China, Sch Med & Pharm, Key Lab Marine Drugs, Chinese Minist Educ, Qingdao 266003, Peoples R China
基金
中国国家自然科学基金;
关键词
covalent docking; deep reinforcement learning; drug design; molecular dynamics simulation; Mpro; PLpro; SARS-CORONAVIRUS; COVALENT INHIBITORS; DRUG DISCOVERY;
D O I
10.4155/fmc-2021-0269
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Background: Since December 2019, SARS-CoV-2 has continued to spread rapidly around the world. The effective drugs may provide a long-term strategy to combat this virus. The main protease (Mpro) and papain-like protease (PLpro) are two important targets for the inhibition of SARS-CoV-2 virus replication and proliferation. Materials & methods: In this study, deep reinforcement learning, covalent docking and molecular dynamics simulations were used to identify novel compounds that have the potential to inhibit both Mpro and PLpro. Results and conclusion: Three compounds were identified that can effectively occupy the Mpro protein cavity with the PLpro protein cavity and form high frequency contacts with key amino acid residues (Mpro: His41, Cys145, Glu166, PLpro: Cys111). These three compounds can be further investigated as potential lead compounds for SARS-CoV-2 inhibitors.
引用
收藏
页码:393 / 405
页数:13
相关论文
共 50 条
  • [31] Perceiving SARS-CoV-2 Mpro and PLpro dual inhibitors from pool of recognized antiviral compounds of endophytic microbes: an in silico simulation study
    Prajapati, Jignesh
    Patel, Rohit
    Rao, Priyashi
    Saraf, Meenu
    Rawal, Rakesh
    Goswami, Dweipayan
    STRUCTURAL CHEMISTRY, 2022, 33 (05) : 1619 - 1643
  • [32] SARS-CoV-2 Mpro: A Potential Target for Peptidomimetics and Small-Molecule Inhibitors
    Citarella, Andrea
    Scala, Angela
    Piperno, Anna
    Micale, Nicola
    BIOMOLECULES, 2021, 11 (04)
  • [33] Statine-based peptidomimetic compounds as inhibitors for SARS-CoV-2 main protease (SARS-CoV-2 Mpro)
    Azevedo, Pedro Henrique R. de A.
    Camargo, Priscila G.
    Constant, Larissa E. C.
    Costa, Stephany da S.
    Silva, Celimar Sinezia
    Rosa, Alice S.
    Souza, Daniel D. C.
    Tucci, Amanda R.
    Ferreira, Vivian N. S.
    Oliveira, Thamara Kelcya F.
    Borba, Nathalia R. R.
    Rodrigues, Carlos R.
    Albuquerque, Magaly G.
    Dias, Luiza R. S.
    Garrett, Rafael
    Miranda, Milene D.
    Allonso, Diego
    Lima, Camilo Henrique da S.
    Muri, Estela Maris F.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [34] Unveiling the mechanism of action of a novel natural dual inhibitor of SARS-CoV-2 Mpro and PLpro with molecular dynamics simulations
    Gu, Xiaoxia
    Zhang, Xiaotian
    Zhang, Xueke
    Wang, Xinyu
    Sun, Weiguang
    Zhang, Yonghui
    Hu, Zhengxi
    NATURAL PRODUCTS AND BIOPROSPECTING, 2025, 15 (01)
  • [35] In Silico Design of New Dual Inhibitors of SARS-CoV-2 MPRO through Ligand- and Structure-Based Methods
    Bono, Alessia
    Lauria, Antonino
    La Monica, Gabriele
    Alamia, Federica
    Mingoia, Francesco
    Martorana, Annamaria
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (09)
  • [36] Identification of known drugs as potential SARS-CoV-2 Mpro inhibitors using ligand- and structure-based virtual screening
    Federico, Leonardo Bruno
    Silva, Guilherme Martins
    da Silva Hage-Melim, Lorane Izabel
    Gomes, Suzane Quintana
    Barcelos, Mariana Pegrucci
    Galindo Francischini, Isaque Antonio
    Tomich de Paula da Silva, Carlos Henrique
    FUTURE MEDICINAL CHEMISTRY, 2021, 13 (16) : 1353 - 1366
  • [37] Designing Potential Inhibitors of SARS-CoV-2 Mpro Using Deep Learning and Steered Molecular Dynamic Simulations
    Tam, Nguyen Minh
    Tran, Linh Hoang
    Vo, Quan V. V.
    Pham, Minh Quan
    Phung, Huong Thi Thu
    JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY, 2023, 22 (05): : 525 - 540
  • [38] High-throughput screening identifies established drugs as SARS-CoV-2 PLpro inhibitors
    Yao Zhao
    Xiaoyu Du
    Yinkai Duan
    Xiaoyan Pan
    Yifang Sun
    Tian You
    Lin Han
    Zhenming Jin
    Weijuan Shang
    Jing Yu
    Hangtian Guo
    Qianying Liu
    Yan Wu
    Chao Peng
    Jun Wang
    Chenghao Zhu
    Xiuna Yang
    Kailin Yang
    Ying Lei
    Luke WGuddat
    Wenqing Xu
    Gengfu Xiao
    Lei Sun
    Leike Zhang
    Zihe Rao
    Haitao Yang
    Protein & Cell, 2021, 12 (11) : 877 - 888
  • [39] High-throughput screening identifies established drugs as SARS-CoV-2 PLpro inhibitors
    Zhao, Yao
    Du, Xiaoyu
    Duan, Yinkai
    Pan, Xiaoyan
    Sun, Yifang
    You, Tian
    Han, Lin
    Jin, Zhenming
    Shang, Weijuan
    Yu, Jing
    Guo, Hangtian
    Liu, Qianying
    Wu, Yan
    Peng, Chao
    Wang, Jun
    Zhu, Chenghao
    Yang, Xiuna
    Yang, Kailin
    Lei, Ying
    Guddat, Luke W.
    Xu, Wenqing
    Xiao, Gengfu
    Sun, Lei
    Zhang, Leike
    Rao, Zihe
    Yang, Haitao
    PROTEIN & CELL, 2021, 12 (11) : 877 - 888
  • [40] Discovery of novel inhibitors against main protease (Mpro) of SARS-CoV-2 via virtual screening and biochemical evaluation
    Guo, Sheng
    Xie, Hang
    Lei, Yu
    Liu, Bin
    Zhang, Li
    Xu, Yechun
    Zuo, Zhili
    BIOORGANIC CHEMISTRY, 2021, 110