Design of SARS-CoV-2 Mpro, PLpro dual-target inhibitors based on deep reinforcement learning and virtual screening

被引:24
|
作者
Zhang, Li-chuan [1 ]
Zhao, Hui-lin [1 ]
Liu, Jin [1 ]
He, Lei [1 ]
Yu, Ri-lei [2 ]
Kang, Cong-min [1 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Chem Engn, Qingdao 266042, Peoples R China
[2] Ocean Univ China, Sch Med & Pharm, Key Lab Marine Drugs, Chinese Minist Educ, Qingdao 266003, Peoples R China
基金
中国国家自然科学基金;
关键词
covalent docking; deep reinforcement learning; drug design; molecular dynamics simulation; Mpro; PLpro; SARS-CORONAVIRUS; COVALENT INHIBITORS; DRUG DISCOVERY;
D O I
10.4155/fmc-2021-0269
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Background: Since December 2019, SARS-CoV-2 has continued to spread rapidly around the world. The effective drugs may provide a long-term strategy to combat this virus. The main protease (Mpro) and papain-like protease (PLpro) are two important targets for the inhibition of SARS-CoV-2 virus replication and proliferation. Materials & methods: In this study, deep reinforcement learning, covalent docking and molecular dynamics simulations were used to identify novel compounds that have the potential to inhibit both Mpro and PLpro. Results and conclusion: Three compounds were identified that can effectively occupy the Mpro protein cavity with the PLpro protein cavity and form high frequency contacts with key amino acid residues (Mpro: His41, Cys145, Glu166, PLpro: Cys111). These three compounds can be further investigated as potential lead compounds for SARS-CoV-2 inhibitors.
引用
收藏
页码:393 / 405
页数:13
相关论文
共 50 条
  • [21] An In silico Investigation to Identify Promising Inhibitors for SARS-CoV-2 Mpro Target
    Alagarsamy, V.
    Sundar, P. Shyam
    Narendhar, B.
    Sulthana, M. T.
    Kulkarni, Vishaka S.
    Aishwarya, A. Dharshini
    Solomon, V. Raja
    Murugesan, S.
    Jubie, S.
    Rohitha, K.
    Dhanwar, Sangeeta
    MEDICINAL CHEMISTRY, 2023, 19 (09) : 925 - 938
  • [22] Applications of Machine Learning Approaches for the Discovery of SARS-CoV-2 PLpro Inhibitors
    Pal, Sourav
    Nance, Kellie D.
    Joshi, Dirgha Raj
    Kales, Stephen C.
    Ye, Lin
    Hu, Xin
    Shamim, Khalida
    Zakharov, Alexey V.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2025, 65 (03) : 1338 - 1356
  • [23] Dietary stigmastane-type saponins as promising dual-target directed inhibitors of SARS-CoV-2 proteases: a structure-based screening
    Ogunyemi, Oludare M.
    Gyebi, Gideon A.
    Ibrahim, Ibrahim M.
    Olaiya, Charles O.
    Ocheje, Joshua O.
    Fabusiwa, Modupe M.
    Adebayo, Joseph O.
    RSC ADVANCES, 2021, 11 (53) : 33380 - 33398
  • [24] Advances in the Development of SARS-CoV-2 Mpro Inhibitors
    Agost-Beltran, Laura
    de la Hoz-Rodriguez, Sergio
    Bou-Iserte, Lledo
    Rodriguez, Santiago
    Fernandez-de-la-Pradilla, Adrian
    Gonzalez, Florenci V.
    MOLECULES, 2022, 27 (08):
  • [25] Multistep structure-based virtual screening approach toward the identification of potential potent SARS-CoV-2 Mpro inhibitors
    Majrashi, Taghreed A.
    El Hassab, Mahmoud A.
    Amin, Mohammed K. Abdel-Hamid
    Elkaeed, Eslam B.
    Shaldam, Moataz A.
    Al-Karmalawy, Ahmed A.
    Eldehna, Wagdy M.
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2024,
  • [26] Pyrazolidinone-based peptidomimetic SARS-CoV-2 Mpro inhibitors
    Jelisejevs, Daniels
    Bula, Anna Lina
    Kinena, Linda
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2023, 96
  • [27] Perceiving SARS-CoV-2 Mpro and PLpro dual inhibitors from pool of recognized antiviral compounds of endophytic microbes: an in silico simulation study
    Jignesh Prajapati
    Rohit Patel
    Priyashi Rao
    Meenu Saraf
    Rakesh Rawal
    Dweipayan Goswami
    Structural Chemistry, 2022, 33 : 1619 - 1643
  • [28] De Novo design of potential inhibitors against SARS-CoV-2 Mpro
    Li, Shimeng
    Wang, Lianxin
    Meng, Jinhui
    Zhao, Qi
    Zhang, Li
    Liu, Hongsheng
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 147
  • [29] Discovery of Non-Covalent Inhibitors for SARS-CoV-2 PLpro: Integrating Virtual Screening, Synthesis, and Experimental Validation
    Sousa, Bruna K. P.
    Mottin, Melina
    Seanego, Donald
    Jurisch, Christopher D.
    Rodrigues, Beatriz S. A.
    da Silva, Veronica L. S.
    Andrade, Milene Aparecida
    Morais Jr, Gilberto S.
    Boerin, Diogo F.
    Froes, Thamires Q.
    Motta, Flavia Nader
    Nonato, M. Cristina
    Bastos, Izabela D. M.
    Chibale, Kelly
    Gessner, Richard K.
    Andrade, Carolina Horta
    ACS MEDICINAL CHEMISTRY LETTERS, 2024, 15 (12): : 2140 - 2149
  • [30] Improved SAR and QSAR models of SARS-CoV-2 Mpro inhibitors based on machine learning
    Tong, Jianbo
    Gao, Peng
    Xu, Haiyin
    Liu, Yuan
    JOURNAL OF MOLECULAR LIQUIDS, 2024, 394