Multi-Agent Deep Reinforcement Learning for Large-Scale Traffic Signal Control

被引:581
|
作者
Chu, Tianshu [1 ]
Wang, Jie [1 ]
Codeca, Lara [2 ]
Li, Zhaojian [3 ]
机构
[1] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA
[2] EURECOM, Commun Syst Dept, F-06904 Sophia Antipolis, France
[3] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA
关键词
Reinforcement learning; Scalability; Heuristic algorithms; Mathematical model; Codecs; Neural networks; Convergence; Adaptive traffic signal control; reinforcement learning; multi-agent reinforcement learning; deep reinforcement learning; actor-critic; ALGORITHMS; NETWORK;
D O I
10.1109/TITS.2019.2901791
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Reinforcement learning (RL) is a promising data-driven approach for adaptive traffic signal control (ATSC) in complex urban traffic networks, and deep neural networks further enhance its learning power. However, the centralized RL is infeasible for large-scale ATSC due to the extremely high dimension of the joint action space. The multi-agent RL (MARL) overcomes the scalability issue by distributing the global control to each local RL agent, but it introduces new challenges: now, the environment becomes partially observable from the viewpoint of each local agent due to limited communication among agents. Most existing studies in MARL focus on designing efficient communication and coordination among traditional Q-learning agents. This paper presents, for the first time, a fully scalable and decentralized MARL algorithm for the state-of-the-art deep RL agent, advantage actor critic (A2C), within the context of ATSC. In particular, two methods are proposed to stabilize the learning procedure, by improving the observability and reducing the learning difficulty of each local agent. The proposed multi-agent A2C is compared against independent A2C and independent Q-learning algorithms, in both a large synthetic traffic grid and a large real-world traffic network of Monaco city, under simulated peak-hour traffic dynamics. The results demonstrate its optimality, robustness, and sample efficiency over the other state-of-the-art decentralized MARL algorithms.
引用
收藏
页码:1086 / 1095
页数:10
相关论文
共 50 条
  • [1] Engineering A Large-Scale Traffic Signal Control: A Multi-Agent Reinforcement Learning Approach
    Chen, Yue
    Li, Changle
    Yue, Wenwei
    Zhang, Hehe
    Mao, Guoqiang
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (IEEE INFOCOM WKSHPS 2021), 2021,
  • [2] GPLight: Grouped Multi-agent Reinforcement Learning for Large-scale Traffic Signal Control
    Liu, Yilin
    Luo, Guiyang
    Yuan, Quan
    Li, Jinglin
    Jin, Lei
    Chen, Bo
    Pan, Rui
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 199 - 207
  • [3] Multi-Agent Reinforcement Learning Based on Representational Communication for Large-Scale Traffic Signal Control
    Bokade, Rohit
    Jin, Xiaoning
    Amato, Christopher
    IEEE ACCESS, 2023, 11 : 47646 - 47658
  • [4] Large-Scale Traffic Signal Control Based on Integration of Adaptive Subgraph Reformulation and Multi-agent Deep Reinforcement Learning
    Gong, Kai
    Sun, Qiwei
    Zhong, Xiaofang
    Zhang, Yanhua
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 751 - 762
  • [5] A multi-agent reinforcement learning method with curriculum transfer for large-scale dynamic traffic signal control
    Xuesi Li
    Jingchen Li
    Haobin Shi
    Applied Intelligence, 2023, 53 : 21433 - 21447
  • [6] A multi-agent reinforcement learning method with curriculum transfer for large-scale dynamic traffic signal control
    Li, Xuesi
    Li, Jingchen
    Shi, Haobin
    APPLIED INTELLIGENCE, 2023, 53 (18) : 21433 - 21447
  • [7] Multi-agent deep reinforcement learning with traffic flow for traffic signal control
    Hou, Liang
    Huang, Dailin
    Cao, Jie
    Ma, Jialin
    JOURNAL OF CONTROL AND DECISION, 2025, 12 (01) : 81 - 92
  • [8] A Distributed Multi-Agent Reinforcement Learning With Graph Decomposition Approach for Large-Scale Adaptive Traffic Signal Control
    Jiang, Shan
    Huang, Yufei
    Jafari, Mohsen
    Jalayer, Mohammad
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (09) : 14689 - 14701
  • [9] Multi-agent Reinforcement Learning for Traffic Signal Control
    Prabuchandran, K. J.
    Kumar, Hemanth A. N.
    Bhatnagar, Shalabh
    2014 IEEE 17TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2014, : 2529 - 2534
  • [10] Multi-Agent Deep Reinforcement Learning for Decentralized Cooperative Traffic Signal Control
    Zhao, Yang
    Hu, Jian-Ming
    Gao, Ming-Yang
    Zhang, Zuo
    CICTP 2020: TRANSPORTATION EVOLUTION IMPACTING FUTURE MOBILITY, 2020, : 458 - 470