A multi-agent reinforcement learning method with curriculum transfer for large-scale dynamic traffic signal control

被引:5
|
作者
Li, Xuesi [1 ]
Li, Jingchen [1 ]
Shi, Haobin [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Youyi Western St, Xian 710079, Peoples R China
基金
中国国家自然科学基金;
关键词
Traffic signal control; Reinforcement learning; Curriculum learning; SYSTEM;
D O I
10.1007/s10489-023-04652-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Using reinforcement learning to control traffic signal systems has been discussed in recent years, but most works focused on simple scenarios such as a single crossroads, and the methods aiming at large-scale traffic scenarios face long-time training and suboptimal results. In this work, we develop a new multi-agent reinforcement model for large-scale traffic signal control tasks, and a curriculum transfer learning method is developed to optimize the joint policy step by step. The policies for different intersections are trained in a partially observable Markov decision process with centralized training and decentralized execution mechanism, and we design transformer modules for both the policy and evaluation networks by attention mechanism. We first train policies in a simple traffic scenario, and then these policies are transferred to the next curriculum by policy reloading, while the experiences of the source task are reused selectively. With the number of agents increasing, our method can achieve satisfactory performances quickly by reusing the knowledge from previous curriculums. We conduct several experiments on the Cityflow testbed. In the case of more than 10 crossroads, our model improve the mean reward from 3.0 to 5.0.
引用
收藏
页码:21433 / 21447
页数:15
相关论文
共 50 条
  • [1] A multi-agent reinforcement learning method with curriculum transfer for large-scale dynamic traffic signal control
    Xuesi Li
    Jingchen Li
    Haobin Shi
    Applied Intelligence, 2023, 53 : 21433 - 21447
  • [2] Multi-Agent Deep Reinforcement Learning for Large-Scale Traffic Signal Control
    Chu, Tianshu
    Wang, Jie
    Codeca, Lara
    Li, Zhaojian
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (03) : 1086 - 1095
  • [3] Engineering A Large-Scale Traffic Signal Control: A Multi-Agent Reinforcement Learning Approach
    Chen, Yue
    Li, Changle
    Yue, Wenwei
    Zhang, Hehe
    Mao, Guoqiang
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (IEEE INFOCOM WKSHPS 2021), 2021,
  • [4] GPLight: Grouped Multi-agent Reinforcement Learning for Large-scale Traffic Signal Control
    Liu, Yilin
    Luo, Guiyang
    Yuan, Quan
    Li, Jinglin
    Jin, Lei
    Chen, Bo
    Pan, Rui
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 199 - 207
  • [5] Multi-Agent Reinforcement Learning Based on Representational Communication for Large-Scale Traffic Signal Control
    Bokade, Rohit
    Jin, Xiaoning
    Amato, Christopher
    IEEE ACCESS, 2023, 11 : 47646 - 47658
  • [6] A Distributed Multi-Agent Reinforcement Learning With Graph Decomposition Approach for Large-Scale Adaptive Traffic Signal Control
    Jiang, Shan
    Huang, Yufei
    Jafari, Mohsen
    Jalayer, Mohammad
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (09) : 14689 - 14701
  • [7] Multi-agent Reinforcement Learning for Traffic Signal Control
    Prabuchandran, K. J.
    Kumar, Hemanth A. N.
    Bhatnagar, Shalabh
    2014 IEEE 17TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2014, : 2529 - 2534
  • [8] Large-Scale Traffic Signal Control Based on Integration of Adaptive Subgraph Reformulation and Multi-agent Deep Reinforcement Learning
    Gong, Kai
    Sun, Qiwei
    Zhong, Xiaofang
    Zhang, Yanhua
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 751 - 762
  • [9] Adaptive Traffic Signal Control for large-scale scenario with Cooperative Group-based Multi-agent reinforcement learning
    Wang, Tong
    Cao, Jiahua
    Hussain, Azhar
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2021, 125
  • [10] Large-Scale Traffic Signal Control Based on Multi-Agent Q-Learning and Pressure
    Qi, Liang
    Sun, Yuanzhen
    Luan, Wenjing
    IEEE ACCESS, 2024, 12 (1092-1101) : 1092 - 1101