A multi-agent reinforcement learning method with curriculum transfer for large-scale dynamic traffic signal control

被引:5
|
作者
Li, Xuesi [1 ]
Li, Jingchen [1 ]
Shi, Haobin [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Youyi Western St, Xian 710079, Peoples R China
基金
中国国家自然科学基金;
关键词
Traffic signal control; Reinforcement learning; Curriculum learning; SYSTEM;
D O I
10.1007/s10489-023-04652-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Using reinforcement learning to control traffic signal systems has been discussed in recent years, but most works focused on simple scenarios such as a single crossroads, and the methods aiming at large-scale traffic scenarios face long-time training and suboptimal results. In this work, we develop a new multi-agent reinforcement model for large-scale traffic signal control tasks, and a curriculum transfer learning method is developed to optimize the joint policy step by step. The policies for different intersections are trained in a partially observable Markov decision process with centralized training and decentralized execution mechanism, and we design transformer modules for both the policy and evaluation networks by attention mechanism. We first train policies in a simple traffic scenario, and then these policies are transferred to the next curriculum by policy reloading, while the experiences of the source task are reused selectively. With the number of agents increasing, our method can achieve satisfactory performances quickly by reusing the knowledge from previous curriculums. We conduct several experiments on the Cityflow testbed. In the case of more than 10 crossroads, our model improve the mean reward from 3.0 to 5.0.
引用
收藏
页码:21433 / 21447
页数:15
相关论文
共 50 条
  • [21] A Large-Scale Multi-Agent Deep Reinforcement Learning Method for Cooperative Output Voltage Control of PEMFCs
    Li, Jiawen
    Cui, Haoyang
    Jiang, Wei
    Yu, Hengwen
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (01): : 78 - 94
  • [22] Concentration Network for Reinforcement Learning of Large-Scale Multi-Agent Systems
    Fu, Qingxu
    Qiu, Tenghai
    Yi, Jianqiang
    Pu, Zhiqiang
    Wu, Shiguang
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 9341 - 9349
  • [23] Multi-Agent Bootstrapped Deep Q-Network for Large-Scale Traffic Signal Control
    Tan, Tian
    Chu, Tianshu
    Wang, Jie
    2020 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA), 2020, : 358 - 365
  • [24] Large-Scale Traffic Grid Signal Control with Regional Reinforcement Learning
    Chu, Tianshu
    Qu, Shuhui
    Wang, Jie
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 815 - 820
  • [25] Dynamic Dispatching for Large-Scale Heterogeneous Fleet via Multi-agent Deep Reinforcement Learning
    Zhang, Chi
    Odonkor, Philip
    Zheng, Shuai
    Khorasgani, Hamed
    Serita, Susumu
    Gupta, Chetan
    Wang, Haiyan
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 1436 - 1441
  • [26] XLight: An interpretable multi-agent reinforcement learning approach for traffic signal control
    Cai, Sibin
    Fang, Jie
    Xu, Mengyun
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 273
  • [27] Multi-Agent Deep Reinforcement Learning for Decentralized Cooperative Traffic Signal Control
    Zhao, Yang
    Hu, Jian-Ming
    Gao, Ming-Yang
    Zhang, Zuo
    CICTP 2020: TRANSPORTATION EVOLUTION IMPACTING FUTURE MOBILITY, 2020, : 458 - 470
  • [28] Multi-Agent Reinforcement Learning for Traffic Signal Control: Algorithms and Robustness Analysis
    Wu, Chunliang
    Ma, Zhenliang
    Kim, Inhi
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [29] PyTSC: A Unified Platform for Multi-Agent Reinforcement Learning in Traffic Signal Control
    Bokade, Rohit
    Jin, Xiaoning
    SENSORS, 2025, 25 (05)
  • [30] A multi-agent reinforcement learning based approach for intelligent traffic signal control
    Benhamza, Karima
    Seridi, Hamid
    Agguini, Meriem
    Bentagine, Amel
    EVOLVING SYSTEMS, 2024, 15 (06) : 2383 - 2397