Multi-Agent Deep Reinforcement Learning for Large-Scale Traffic Signal Control

被引:581
|
作者
Chu, Tianshu [1 ]
Wang, Jie [1 ]
Codeca, Lara [2 ]
Li, Zhaojian [3 ]
机构
[1] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA
[2] EURECOM, Commun Syst Dept, F-06904 Sophia Antipolis, France
[3] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA
关键词
Reinforcement learning; Scalability; Heuristic algorithms; Mathematical model; Codecs; Neural networks; Convergence; Adaptive traffic signal control; reinforcement learning; multi-agent reinforcement learning; deep reinforcement learning; actor-critic; ALGORITHMS; NETWORK;
D O I
10.1109/TITS.2019.2901791
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Reinforcement learning (RL) is a promising data-driven approach for adaptive traffic signal control (ATSC) in complex urban traffic networks, and deep neural networks further enhance its learning power. However, the centralized RL is infeasible for large-scale ATSC due to the extremely high dimension of the joint action space. The multi-agent RL (MARL) overcomes the scalability issue by distributing the global control to each local RL agent, but it introduces new challenges: now, the environment becomes partially observable from the viewpoint of each local agent due to limited communication among agents. Most existing studies in MARL focus on designing efficient communication and coordination among traditional Q-learning agents. This paper presents, for the first time, a fully scalable and decentralized MARL algorithm for the state-of-the-art deep RL agent, advantage actor critic (A2C), within the context of ATSC. In particular, two methods are proposed to stabilize the learning procedure, by improving the observability and reducing the learning difficulty of each local agent. The proposed multi-agent A2C is compared against independent A2C and independent Q-learning algorithms, in both a large synthetic traffic grid and a large real-world traffic network of Monaco city, under simulated peak-hour traffic dynamics. The results demonstrate its optimality, robustness, and sample efficiency over the other state-of-the-art decentralized MARL algorithms.
引用
收藏
页码:1086 / 1095
页数:10
相关论文
共 50 条
  • [21] Multi-Agent Reinforcement Learning for Traffic Signal Control: A Cooperative Approach
    Kolat, Mate
    Kovari, Balint
    Becsi, Tamas
    Aradi, Szilard
    SUSTAINABILITY, 2023, 15 (04)
  • [22] Cooperative Traffic Signal Control Based on Multi-agent Reinforcement Learning
    Gao, Ruowen
    Liu, Zhihan
    Li, Jinglin
    Yuan, Quan
    BLOCKCHAIN AND TRUSTWORTHY SYSTEMS, BLOCKSYS 2019, 2020, 1156 : 787 - 793
  • [23] Hierarchical graph multi-agent reinforcement learning for traffic signal control
    Yang, Shantian
    INFORMATION SCIENCES, 2023, 634 : 55 - 72
  • [24] Causal inference multi-agent reinforcement learning for traffic signal control
    Yang, Shantian
    Yang, Bo
    Zeng, Zheng
    Kang, Zhongfeng
    INFORMATION FUSION, 2023, 94 : 243 - 256
  • [25] Traffic signal priority control based on shared experience multi-agent deep reinforcement learning
    Wang, Zhiwen
    Yang, Kangkang
    Li, Long
    Lu, Yanrong
    Tao, Yufei
    IET INTELLIGENT TRANSPORT SYSTEMS, 2023, 17 (07) : 1363 - 1379
  • [26] A large-scale traffic signal control algorithm based on multi-layer graph deep reinforcement learning
    Wang, Tao
    Zhu, Zhipeng
    Zhang, Jing
    Tian, Junfang
    Zhang, Wenyi
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2024, 162
  • [27] Distributed agent-based deep reinforcement learning for large scale traffic signal control
    Wu, Qiang
    Wu, Jianqing
    Shen, Jun
    Du, Bo
    Telikani, Akbar
    Fahmideh, Mahdi
    Liang, Chao
    KNOWLEDGE-BASED SYSTEMS, 2022, 241
  • [28] Multi-Agent Deep Reinforcement Learning for Large-scale Platoon Coordination with Partial Information at Hubs
    Wei, Dixiao
    Yi, Peng
    Lei, Jinlong
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 6242 - 6248
  • [29] Dynamic Dispatching for Large-Scale Heterogeneous Fleet via Multi-agent Deep Reinforcement Learning
    Zhang, Chi
    Odonkor, Philip
    Zheng, Shuai
    Khorasgani, Hamed
    Serita, Susumu
    Gupta, Chetan
    Wang, Haiyan
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 1436 - 1441
  • [30] Toward A Thousand Lights: Decentralized Deep Reinforcement Learning for Large-Scale Traffic Signal Control
    Chen, Chacha
    Wei, Hua
    Xu, Nan
    Zheng, Guanjie
    Yang, Ming
    Xiong, Yuanhao
    Xu, Kai
    Li, Zhenhui
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 3414 - 3421