Multigrid method with a new interpolation operator

被引:1
|
作者
Liu, Zhiyong [1 ,2 ]
机构
[1] Xiangtan Univ, Inst Computat & Appl Math, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Sch Math & Comp Sci, Xiangtan 411105, Hunan, Peoples R China
关键词
multigrid; discontinuous coefficients; interpolation; Nelder-Mead algorithm; STRONGLY DISCONTINUOUS COEFFICIENTS; DEPENDENT TRANSFER OPERATORS; ELLIPTIC PROBLEMS; SIMPLEX-METHOD;
D O I
10.1080/00207160.2010.489109
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce new techniques to design interpolation in multigrid methods for elliptic problems with discontinuous coefficients. The new techniques employ the Nelder-Mead simplex algorithm and skills in space geometry. The Nelder-Mead algorithm was used to minimize a scalar-valued function, which is a sum of distances from a point to four planes. We derived interpolation scheme in space geometry. We observed that new interpolation is better than traditional bilinear interpolation and cubic interpolation, as prolongation operator in multigrid methods.
引用
收藏
页码:982 / 993
页数:12
相关论文
共 50 条
  • [41] Cost-effective multigrid projection operator
    George Washington Univ, Washington, United States
    J Comput Appl Math, 1-2 (325-333):
  • [42] Multigrid preconditioning for the overlap operator in lattice QCD
    James Brannick
    Andreas Frommer
    Karsten Kahl
    Björn Leder
    Matthias Rottmann
    Artur Strebel
    Numerische Mathematik, 2016, 132 : 463 - 490
  • [43] A cost-effective multigrid projection operator
    Zhang, J
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 76 (1-2) : 325 - 333
  • [44] A NEW METHOD OF INTERPOLATION FOR METEOROLOGICAL DATA
    周家斌
    Science Bulletin, 1988, (02) : 169 - 171
  • [45] New interpolation method with fractal curves
    Cader, Andrzej
    Krupski, Marcin
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2006, PROCEEDINGS, 2006, 4029 : 1071 - 1081
  • [46] A New Method for Polar Field Interpolation
    X. Sun
    Y. Liu
    J. T. Hoeksema
    K. Hayashi
    X. Zhao
    Solar Physics, 2011, 270 : 9 - 22
  • [47] Stolt redux: A new interpolation method
    Popovici, AM
    Muir, F
    Blondel, P
    JOURNAL OF SEISMIC EXPLORATION, 1996, 5 (04): : 341 - 347
  • [48] A New Method for Polar Field Interpolation
    Sun, X.
    Liu, Y.
    Hoeksema, J. T.
    Hayashi, K.
    Zhao, X.
    SOLAR PHYSICS, 2011, 270 (01) : 9 - 22
  • [49] A NEW METHOD OF INTERPOLATION FOR METEOROLOGICAL DATA
    ZHOU, JB
    KEXUE TONGBAO, 1988, 33 (02): : 169 - 171
  • [50] A new method judging the interpolation direction
    1600, World Scientific and Engineering Academy and Society, Ag. Ioannou Theologou 17-23, Zographou, Athens, 15773, Greece (10):