Multigrid preconditioning for the overlap operator in lattice QCD
被引:0
|
作者:
James Brannick
论文数: 0引用数: 0
h-index: 0
机构:Pennsylvania State University,Department of Mathematics
James Brannick
Andreas Frommer
论文数: 0引用数: 0
h-index: 0
机构:Pennsylvania State University,Department of Mathematics
Andreas Frommer
Karsten Kahl
论文数: 0引用数: 0
h-index: 0
机构:Pennsylvania State University,Department of Mathematics
Karsten Kahl
Björn Leder
论文数: 0引用数: 0
h-index: 0
机构:Pennsylvania State University,Department of Mathematics
Björn Leder
Matthias Rottmann
论文数: 0引用数: 0
h-index: 0
机构:Pennsylvania State University,Department of Mathematics
Matthias Rottmann
Artur Strebel
论文数: 0引用数: 0
h-index: 0
机构:Pennsylvania State University,Department of Mathematics
Artur Strebel
机构:
[1] Pennsylvania State University,Department of Mathematics
[2] Bergische Universität Wuppertal,Fachbereich Mathematik und Naturwissenschaften
来源:
Numerische Mathematik
|
2016年
/
132卷
关键词:
65F08;
65F10;
65Z05;
65Y05;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The overlap operator is a lattice discretization of the Dirac operator of quantum chromodynamics (QCD), the fundamental physical theory of the strong interaction between the quarks. As opposed to other discretizations, it preserves the important physical property of chiral symmetry, at the expense of requiring much more effort when solving systems posed with this operator. We present a preconditioning technique based on another lattice discretization, the Wilson-Dirac operator. The mathematical analysis precisely describes the effect of this preconditioning strategy in the case that the Wilson-Dirac operator is normal. Although this is not exactly the case in realistic settings, we show that current smearing techniques indeed drive the Wilson-Dirac operator towards normality, thus providing motivation for why our preconditioner works well in practice. Results of numerical experiments in physically relevant settings show that our preconditioning yields accelerations of more than an order of magnitude compared to unpreconditioned solvers.
机构:
Coll William & Mary, Dept Comp Sci, Williamsburg, VA 23185 USAColl William & Mary, Dept Comp Sci, Williamsburg, VA 23185 USA
Romero, Eloy
Stathopoulos, Andreas
论文数: 0引用数: 0
h-index: 0
机构:
Coll William & Mary, Dept Comp Sci, Williamsburg, VA 23185 USAColl William & Mary, Dept Comp Sci, Williamsburg, VA 23185 USA
Stathopoulos, Andreas
Orginos, Kostas
论文数: 0引用数: 0
h-index: 0
机构:
Coll William & Mary, Dept Phys, Williamsburg, VA 23185 USA
Jefferson Lab, Newport News, VA USAColl William & Mary, Dept Comp Sci, Williamsburg, VA 23185 USA
机构:
Penn State Univ, Dept Math, University Pk, PA 16802 USAPenn State Univ, Dept Math, University Pk, PA 16802 USA
Brannick, J.
Brower, R. C.
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Ctr Computat Sci, Boston, MA 02215 USA
Boston Univ, Dept Phys, Boston, MA 02215 USAPenn State Univ, Dept Math, University Pk, PA 16802 USA
Brower, R. C.
Clark, M. A.
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Ctr Computat Sci, Boston, MA 02215 USAPenn State Univ, Dept Math, University Pk, PA 16802 USA
Clark, M. A.
Osborn, J. C.
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Ctr Computat Sci, Boston, MA 02215 USAPenn State Univ, Dept Math, University Pk, PA 16802 USA
Osborn, J. C.
Rebbi, C.
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Ctr Computat Sci, Boston, MA 02215 USA
Boston Univ, Dept Phys, Boston, MA 02215 USAPenn State Univ, Dept Math, University Pk, PA 16802 USA