Global-in-time semiclassical regularity for the Hartree-Fock equation

被引:4
|
作者
Chong, J. J. [1 ]
Lafleche, L. [1 ]
Saffirio, C. [2 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Dept Math & Comp Sci, Spiegelgasse 1, CH-4051 Basel, Switzerland
关键词
POISSON SYSTEM; EXISTENCE; UNIQUENESS; BEHAVIOR; LIMIT;
D O I
10.1063/5.0089741
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For arbitrarily large times T > 0, we prove the uniform-in-h propagation of semiclassical regularity for the solutions to the Hartree-Fock equation with singular interactions of the form V(x) = +/-|x|(-a) with a is an element of (0, 1/2). As a by-product of this result, we extend to arbitrarily long times the derivation of the Hartree-Fock and the Vlasov equations from the many-body dynamics provided in the work of Chong et al. [arXiv:2103.10946 (2021)]. (C) 2022 Author(s).
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Dispersive Global Solutions to the Time-Dependent Hartree-Fock Type Equation with a Long-Range Potential
    Shimomura, Akihiro
    JOURNAL OF MATHEMATICAL SCIENCES-THE UNIVERSITY OF TOKYO, 2009, 16 (02): : 239 - 267
  • [32] Numerical solution of the Hartree-Fock equation in molecular geometries
    Talman, James D.
    PHYSICAL REVIEW A, 2010, 82 (05):
  • [33] Quark matter equation of state with Hartree-Fock approximation
    Grassi, F
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1996, 71 (04): : 645 - 650
  • [34] SOLUTION OF HARTREE-FOCK EQUATION IN TERMS OF OCALIZED ORBITALS
    ADAMS, WH
    JOURNAL OF CHEMICAL PHYSICS, 1961, 34 (01): : 89 - &
  • [35] HARTREE-FOCK TIME-DEPENDENT PROBLEM
    BOVE, A
    DAPRATO, G
    FANO, G
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 49 (01) : 25 - 33
  • [36] LOWEST EXCITED-STATE IN HARTREE-FOCK EQUATION
    RAYCHOWDHURY, PN
    ACTA CRYSTALLOGRAPHICA SECTION A, 1975, 31 : S298 - S298
  • [37] TIME-DEPENDENT HARTREE-FOCK EQUATIONS
    SMET, F
    TILLIEU, J
    VANGROENENDAEL, A
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1980, 17 (03) : 531 - 547
  • [38] Quark matter equation of state with Hartree-Fock approximation
    Grassi, Frédérique
    European Physical Journal C, 2011, 71 (01): : 645 - 650
  • [39] Time-dependent projected Hartree-Fock
    Tsuchimochi, Takashi
    Van Voorhisa, Troy
    JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (12):
  • [40] TIME-DEPENDENT HARTREE-FOCK AND BEYOND
    GOEKE, K
    CUSSON, RY
    GRUMMER, F
    REINHARD, PG
    REINHARDT, H
    SUPPLEMENT OF THE PROGRESS OF THEORETICAL PHYSICS, 1983, (74-7): : 33 - 65